Los Alamos

Radiation Monitoring

Notebook

LA-UR-00-2584

James T. (Tom) Voss, NRRPT, CHP

June 2000 (Feb. 2001 Update)

TABLE OF CONTENTS

	Page #
Abbreviations	3
Conversion of Units	4 – 7
Constants	7 - 8
Rules of Thumb	8 - 16
Units and Terminology	17
Radiation Interactions	18
Public Radiation Dose Rates	19
Radon Facts	20
Biological Effects of Radiation	21
Dosimetry	22 - 24
Equivalent Dose, Effective Dose, and Committed Effective Dose	25
Radiation Weighting Factors	26
Calculating TODE and TEDE	27
Effects of Radiation Exposure	28
Table of the Elements	29 - 30
Radioactive Decay Chart	31 - 32
Reporting Radiological Data	33
Surface Contamination Correction Factors	34 - 35
Detector Efficiency	36
Alpha & Beta Crosstalk	36
Correction Factors for Efficiency	36
Inverse Square Law	37
Shallow Dose Correction Factors	37
Stay-Time Calculations	37
Calculating Exposure Rate in an Air-Filled Ionization Chamber	38
Calculating Percent Resolution of a Gamma Spectroscopy Detector	38
Calculating True Count Rate Based on Resolving Time of a Gas-Filled Detector	38
Calculating Gamma-Ray Constant	39
Calculating Photon Fluence Rate from a Point Source	39
Calculating Exposure Rate from a Point Source	39

TABLE OF CONTENTS

TABLE OF CONTENTS	
	Page #
Calculating Dose Rate to air from a Point Beta Source	39
Calculating Exposure Rate from a Line Source	40
Calculating Exposure Rate from a Disk Source	40
Calculating 6CEN	40
Calculating Airborne Radioactivity	41
Respiratory Protection Factors	41
Air Monitoring Calculations	42 - 44
Surface Area Calculations	45
Volume Calculations	46
Gamma & Neutron Half-Value Layers	47
Shielding Calculations	48 - 50
Shielding Materials	51
Calculating Transmission Factor (X-ray)	51
Density of Various Materials	52
Radioactive Decay Graphs	53 - 54
Table 1 of DOE 5400.5	55
Appendix D of 10CFR835	56
Posting	57 - 58
Instrument Use and Selection	59 - 60
DOT 49CFR173	61 - 62
Specific Activity	63 - 64
Characteristic Radiations of Radionuclides	65 - 72
Specific Activity vs. Radiation Levels	73 - 76
Gamma Exposure vs. Particle Size	77 - 78
Ingestion and Inhalation ALIs	79 - 86
Activity vs. Particle Size	87 - 88
Emergency Response	89 - 92
Facility Hazards	93
Thorium-232 and Uranium-238 Decay Chains	94 - 96
Calendar Years 2001 and 2002	97 - 98
Alphabetical Index	99 - 100

ABBREVIATIONS

ampere	A, or amp
angstrom unit	D, or A
atmosphere	atm
atomic weight	at. wt.
cubic foot	ft ³ , or cu. Ft.
cubic feet per minute	ft ³ /min, or cfm
cubic inch	in ³ , or cu. in.
cubic meter	m³, or cu. m.
curie	Ci
day	day, or d
degree	deg, or $^{\circ}$
disintegrations per minute	dpm
foot	ft.
gallon	gal.
gallons per minute	gpm
hour	h, or hr
inch	in.
liter	L
meter	m
micron	μ, μm, or mu
minute	min, or m
pounds per square inch	lb/in², or psi
roentgen	R
second	sec, or s
square centimeter	cm ² , or sq cm
square foot	ft², sq ft
square meter	m², or sq m
volt	V, or v
watt	W, or w
year	yr, or y

Multiply	®		UNITS ®	To Obtain
		by		
To Obtain	®	by	R	Divide
		Length		
Angstroms		1 E-8		centimeters
Inches		2.54		centimeters
meters		3.2808		feet
kilometers		0.6214		miles
miles		5280		feet
microns (µm)		1 E-6		meters
mils		1 E-3		inches
		Area		
Acres		43,560		square feet
Barns		1 E-24		square centimeters
Square centimete	ers	0.1550		square inches
Square meters		10.764		square feet
Square meters		3.861 E-7		square miles
Square miles		640		acres
		Volume		
Cubic centimeters	6	3.531 E-5		cubic feet
Cubic centimeters	6	1 E-6		cubic meters
Cubic feet		28.316		liters
Cubic feet		7.481		gallons
Liters		1.057		quarts
Liters		0.2642		gallons
Cubic meters		35.315		cubic feet
Cubic meters		1,000		liters
Milliliters		1		cubic centimeters

CONVERSION OF UNITS

Multiply	R	by	®	To Obtain
To Obtain	R	by	R	Divide
		Time		
days		1440		minutes
days		86,400		seconds
work week		1.44 E5		seconds
work month		4.33		work weeks
work month		173.3		work hours
years (calendar)		365		days
years		8,760		hours
years		5.256 E5		minutes
years		3.1536 E7		seconds
		Density		
grams / cm ³		62.428		pounds / cubic foot
grams / cm ³		8.345		pounds / gallon
		Pressure		
atmospheres		1.0133		bars
atmospheres		1,033		grams / cm ²
atmospheres		14.70		pounds / in. ²
atmospheres		760		mm Hg @ 0 ºC
atmospheres		29.921		inches Hg $@$ 32 $^{\circ}$ F
atmospheres		33.90		feet $H_2O @ 39.2 \ ^{0}F$
bars		1 E6		dynes / cm ²
dynes / cm²		1.0197 E-3		grams / cm ²
grams / cm ²		0.01422		pounds / square inch
Torr		1		mm Hg @ 0 ºC
		Energy		
ergs		6.242 E11		electron volts
ergs		2.390 E-8		gram calories
electron volts		1.602 E-12		ergs

CONVERSION OF UNITS

Multiply	®	by	®	To Obtain
To Obtain	R	by	R	Divide
		Mass		
grams		0.03527		ounces
kilograms		2.2046		pounds
pounds		16		ounces
pounds		453.59		grams
		Others		
amperes		2.998 E9		electrostatic units / sec
amperes		6.242 E18		electronic charges / sec
coulombs		6.242 E18		electronic charges
radians		57.296		degrees
		Radiologica	I	
rads		100		ergs / gram
rads		6.242 E13		electron volts / gram
roentgens		87.7		ergs / gram of air
roentgens		1.61 E12		ion pairs / gram of air
roentgens		5.47 E13		electron volts / gm of air
sievert		100		rem
curies		3.7 E10		dps
curies		2.22 E12		dpm
µcuries / sq. meter		220		dpm / cm ²
megacuries / sq. mile	е	0.386		curies / square meter
dpm/m ³		4.5 E-13		microcuries / cm ³
bequerels		2.7027 E-11		curies
bequerels		1		dps
BTU		1.28 E-8		grams ²³⁵ U fissioned
BTU		1.53 E-8		grams ²³⁵ U destroyed
BTU		3.29 E13		fissions
fission of 1 g 235 U		1		megawatt-days
fissions		8.9058 E-18		kilowatt-hours
fissions		3.204 E-4		ergs
		Page	6	

CONVERSION OF UNITS

					,		
Multiply		R	by	R)		To Obtain
To Obtain		R	by	R)		Divide
			Power				
joules/sec			1 E7				ergs / second
watts			1 E7				ergs / second
watts			0.001341				horsepower
watts			3.1 E10				fissions / second
		N	IULTIPLES AND S	UBMULTI	PLES		
10 ¹²	tera	Т	-	10 ⁻¹	d	leci	d
10 ⁹	giga	G	6	10 ⁻²	С	enti	С
10 ⁶	mega	Ν	Л	10 ⁻³	n	nilli	m
10 ³	kilo	k		10 ⁻⁶	n	nicro	μ
10 ²	hecto	h	1	10 ⁻⁹	n	ano	n
10 ¹	deka	d	la	10 ⁻¹²	р	oico	р
10 ⁰	1	1		10 ⁻¹⁵	fe	emto	f
				10 ⁻¹⁸	а	itto	а
		G		Г			
А	α	Alpha		Ν	ν	,	Nu
В	β	Beta		Ξ	ξ	,	Xi
Γ	γ	Gamma		0	0)	Omicron
Δ	δ	Delta		П	π	5	Pi
Е	ε	Epsilon		Р	ρ)	Rho
Z	ζ	Zeta		Σ	σ	5	Sigma
Н	η	Eta		Т	τ		Tau
Θ	θ	Theta		Y	υ)	Upsilon
Ι	ι	lota		Φ	φ)	Phi
K	κ	Kappa		Х	χ		Chi
Λ	λ	Lambda		Ψ	ų		Psi
М	μ	Mu		Ω	a		Omega
							-

CONSTANTS

Avogadro's number (N₀)	6.02252 E23
electron charge (e)	4.80298 E-10 esu
electron rest mass (m _e)	9.1091 E-28 g
acceleration gravity (g)	32.1725 ft / sec ²
@ sea level & 45 [°] latitude	980.621 cm / sec ²
Planck's constant (h)	6.625 E-27 erg-sec
velocity of light (c)	2.9979 E10 cm / sec
velocity of light (c)	186,280 miles / sec
ideal gas volume (V ₀)	22,414 cm ³ / mole (STP)
neutron mass	1.67482 E-24 g
proton mass	1.67252 E-24 g
ratio of proton to electron mass	1,836.13
natural base of logarithms (e)	2.71828
π	3.14159

A gram-molecular weight of any gas contains (Avogadro's number), N_0 (6.02252 E23) atoms and occupies a volume of 22,414 cm³ at STP.

Temperature

$^{\circ}C = (^{\circ}F - 32)(5/9)$	$^{\circ}F = 1.8 ^{\circ}C + 32$
${}^{0}K = {}^{0}C + 273.1$	${}^{0}R = {}^{0}F + 459.58$

Conversion Equations

grams/sq. cm	=	density (g/cm ³) x thickness (cm)
Photon energy (keV)	=	12.4/wavelength (A)

RULES OF THUMB FOR ALPHA PARTICLES

- 1. An alpha particle of at least 7.5 MeV energy is needed to penetrate the nominal protective layer of the skin (7 mg / cm^2 or 0.07 mm).
- 2. The alpha emissions and energies of the predominant particles from 1 µg of several common materials are:

	DPM per µg	Alpha Energy (MeV)
²³⁸ Pu	39,000,000	5.50 (72%)
²³⁹ Pu	140,000	5.15 (72.5%)
²⁴⁰ Pu	500,000	5.16 (76%)
²⁴² Pu	8,700	4.90 (76%)
^a Natural U	1.5	4.20 (37%), 4.77 (36%)
Oralloy (93% ²³⁵ U)	160	4.77 (~ 80%)
^b Natural Th	0.5	4.01 (38%), 5.43 (36%)
D-38 (DU, tuballoy)	1	4.20 (~ 60%)

^a Includes ²³⁴U in equilibrium.

^b Includes ²²⁸Th in equilibrium. Depending upon the time since chemical separation, ²²⁸Th can decrease to give a net disintegration rate lower than 0.5.

^{c.} With 2π (50%) geometry, the surface of a thick uranium metal (tuballoy) source gives

~ 2400 alpha counts/min per cm². Depleted uranium (D-38) gives ~ 800 alpha cpm/cm².

3. Alpha particle range in cm of air at 1 atmosphere

 $R_a = 0.56 E (E < 4 MeV)$

 $R_a = 1.24 \text{ E} - 2.62 \text{ (E} > 4 \text{ MeV)}$

Alpha particles lose about 60KeV of energy per mm of air at 1 atmosphere.

RULES OF THUMB FOR ALPHA PARTICLES

- 4. Detector window thicknesses cause alpha particles to lose energy at about 1 MeV per mg/cm² of window thickness. Therefore, a detector with a window thickness of 3 mg/cm² (such as sealed gas-proportional pancake alpha/beta detectors and pancake GM detectors) will not detect alpha emitters of less than 3 MeV. These detectors will have very low efficiency for low energy alpha particles or attenuated alpha particles.
- **5.** Air proportional alpha particles have a flatter energy vs efficiency response than gasproportional or GM detectors.

6. Half-value thickness vs alpha energy

- A. For surface alpha contamination first determine an unshielded net count rate (subtract background) with your instrument.
- **B.** Place a sheet of mylar between the source and the detector and take another net reading. Some typical thickness of mylar are 0.29, 0.45, 0.85, and 0.9 mg/cm².
- **C.** Calculate the half-value density thickness by using this formula.

 $mg / cm^{2} = \frac{mg / cm^{2} \text{ of the mylar } x - 0.693}{\ln \text{ (shielded net count rate / unshielded net count rate)}}$ Note: make sure to take the natural log of the count rates

D. Approximate the alpha energy in MeV by using this formula. MeV = $4.5 \times \sqrt{1000}$ thickness from 'C'

RULES OF THUMB FOR BETA PARTICLES

- **1.** Beta particles of at least 70 keV energy are required to penetrate the nominal protective layer of the skin $(7 \text{ mg} / \text{cm}^2 \text{ or } 0.07 \text{mm})$.
- 2. The average energy of a beta-ray spectrum is approximately one-third the maximum energy.
- **3.** The range of beta particles in air is ~ 12 ft / MeV.
- 4. The range of beta particles (or electrons) in grams / cm² (thickness in cm multiplied by the density in grams / cm³) is approximately half the maximum energy in MeV. This rule overestimates the range for low energies (0.5 MeV) and low atomic numbers, and underestimates for high energies and high atomic numbers.
- 5. The dose rate in rads per hour in an infinite medium uniformly contaminated by a beta emitter is $2.12 \text{ EC} / \rho$ where E is the average beta energy per disintegration in MeV, C is the concentration in μ Ci / cm³, and ρ is the density of the medium in grams/cm³. The dose rate at the surface of the mass is one half the value given by this relation. In such a large mass, the relative beta and gamma dose rates are in the ratio of the average energies released per disintegration.
- 6. The surface dose rate through 7 mg / cm^2 from a uniform thin deposition of 1 μ Ci / cm^2 is about 9 rads / h for energies above about 0.6 MeV. Note that in a thin layer, the beta dose rate exceeds the gamma dose rate, for equal energies released, by about a factor of 100.
- The bremsstrahlung from a 1 Ci P³² aqueous solution in a glass bottle is ~ 3 mrad / h at 1 m.
- 8. For a Sr⁹⁰ / Y⁹⁰ source greater than 10 cm in diameter, a reading of 0.1 mR / h on a portable Geiger counter with the window open corresponds to a contamination level of $3.5 \text{ E-5 } \mu\text{Ci}$ / cm² (6.9 E-2 μCi total). For a small source with a diameter of 0.75 cm, the same reading corresponds to $3.5 \text{ E-3 } \mu\text{Ci}$ / cm² (1.5 E-3 μCi total).

RULES OF THUMB FOR BETA PARTICLES

9. Half-value thickness vs beta energy

Isotope	ß max energy (KeV)	Half-Value Thickness
Tc ⁹⁹	292	7.5 mg / cm^2
Cl ³⁶	714	15 mg / cm ²
Sr ⁹⁰ / Y ⁹⁰	546 / 2270	50 mg / cm ²
U ²³⁸ Betas from s	hort lived progeny	
	191 / 2290	130 mg / cm ²

- For surface beta contamination first determine an unshielded net count rate (subtract background) with your instrument.
- **B.** Place one sheet of this notebook paper between the source and the detector and take another net reading.
 - (1) A single sheet of paper will stop all alpha particles and some low energy beta particles. If the new net count rate is zero, then the contamination is alpha only and/or a very low energy beta such as C¹⁴.
 - (2) The single sheet of paper will reduce the count rate from a 400 KeV beta particle by approximately one-half.
- **C.** Continue adding layers of paper between the source of contamination and the detector until the net count rate is less than one-half of the unshielded net count rate.
- **D.** Multiply the number of pages used for shielding by 7.5. This is the total half-value thickness in mg / cm^2 .
- E. If you are unable to decrease the net count rate to one-half, then use this formula to estimate the half-value thickness.

mg / cm² = $7.5 \times \#$ of sheets of paper x -0.693 In (shielded net count rate / unshielded net count rate)

F. Approximate the beta energy in KeV by using this formula.

KeV = 250 x $\sqrt{\text{thickness from 'D' or "E' above}}$ - 300

RULES OF THUMB FOR GAMMA RAYS

- 1. For point sources with energies between 0.07 and 4 MeV, the exposure rate in roentgens per hour at 1 ft is given within 20% by 6 CEN, where C is the number of curies, E is the average gamma energy per disintegration in MeV, & N is the γ abundance.
- 2. The dose rate 1 m above a flat, infinite plane contaminated with a thin layer (1 Ci / m²) of gamma emitters is:

Energy (MeV)	Dose rate (Rads / h)
0.4	7.2
0.6	10
0.8	13
1.0	16
1.2	19

- 3. The dose rate to tissue in rads per hour in an infinite medium uniformly contaminated by a gamma emitter is 2.12 EC / ρ, where C is the number of microcuries per cubic centimeter, E is the average gamma energy per disintegration in MeV, and ρ is the density of the medium. At the surface of a large body, the dose rate is about half of this. At ground level (one-half of an infinite cloud), the dose rate from a uniformly contaminated atmosphere is 1600 EC rads/h per µCi / cm³.
- The radiation scattered from the air (skyshine) from a 100 Ci ⁶⁰Co source 1 ft behind a 4-ft-high shield is ~ 100 mR / h at 6 in. from the outside of the shield.

RULES OF THUMB FOR NEUTRONS

The number of neutrons per square centimeter per second at a distance R from a small source emitting Q neutrons per second without shielding is given by;

$$\frac{n}{cm^2-sec} = \frac{Q}{4\pi R^2} = \frac{0.08Q}{R^2}$$

For α , η neutron sources:

Q (neutrons per million alpha particles) = $0.152E^{3.65}$

Where E is the alpha particle energy in MeV

This holds true for Be targets; multiply by 0.16 for B targets, multiply by 0.05 for F targets.

APPROXIMATE NEUTRON ENERGIES

cold neutrons	0 - 0.025 eV
thermal neutrons	0.025 eV
epithermal neutrons	0.025 - 0.4 eV
cadmium neutrons	0.4 - 0.6 eV
epicadmium neutrons	0.6 - 1 eV
slow neutrons	1 eV - 10 eV
slow neutrons resonance neutrons	1 eV - 10 eV 10 eV - 300 eV
resonance neutrons	10 eV - 300 eV

Note: A thermal neutron is one which has the same energy and moves at the same velocity as a gas molecule does at a temperature of 20 degrees C. The velocity of a thermal neutron is 2200 m/sec (~5,000 mph).

CRITICALITY BADGE NEUTRON RESPONSE

Indium	\Rightarrow	thermal & 1.5 eV
Gold	\Rightarrow	thermal & 5 eV
Indium	\Rightarrow	1 MeV threshold
Sulphur	\Rightarrow	2.9 MeV threshold
Copper	\Rightarrow	11.4 MeV threshold

RULES OF THUMB FOR NEUTRONS

a , h sources	h energy in MeV	neutrons per million a decays
Pu ²³⁹ Be	4.5	61
Po ²¹⁰ Be	4.2	71
Pu ²³⁸ Be	4.5	79
Am ²⁴¹ Be	4.5	76
Cm ²⁴⁴ Be	4	100
Cm ²⁴² Be	4	112
Ra ²²⁶ Be	spectrum, 4, 5	502
Ac ²²⁷ Be	multiple, 4.6	702
Am ²⁴¹ B		13
Am ²⁴¹ F		4.1
Am ²⁴¹ Li	0.7	1.4
Po ²¹⁰ Li	0.48	1.2
Po ²¹⁰ B	2.5	10
Po ²¹⁰ F	0.42	3
Pu ²³⁸ C ¹³		11
Ra ²²⁶ B	3.0	80

neutron yield is the average of calculated and experimental Cm²⁴⁴Be does not include neutrons from spontaneous fission Ra²²⁶ and Ac²²⁷ include progeny effects

Spontaneous fission	h/sec/g
Cm ²⁴⁴	1.2E7
Cf ²⁵²	2.3E12
Pu ²³⁹	0.03
Am ²⁴¹	0.6
Bk ²⁴⁹	2.7E5

MISCELLANEOUS RULES OF THUMB

- One watt of power in a reactor requires 3.1 E10 fissions per second. In a reactor operating for more than 4 days, the total fission products are about 3 Ci / watt at 1.5 min after shutdown. At 2 yr after shutdown, the fission products are approximately 75 Ci / MW-day.
- The quantity of a short-lived fission product in a reactor which has been operated about four times as long as the half-life is given by;
 Ci = 3.7 E10 (FY)(PL) / 3.7 E10 ≈ (FY)(PL) , where FY is the fission yield (%/100) and PL is the power level in watts.
- 3. The correction factor for unsealed ion chambers to standard temperatures and pressures $(0^{\circ}C \text{ and } 760 \text{ mm of Hg})$ is; f = $(t + 273) / (273) \times (760 / P) = 2.78(t + 273) / P$, where t is the temperature in degrees C and P is the barometric pressure in mm of Hg.
- **4.** The activity of an isotope (without radioactive daughter) is reduced to less than 1% after seven half-lives.
- 5. Uranium Enrichment by % by Weight

	Typica	al		Enriched	
	Natural	Commercial	10%	20%	Depleted
U ²³⁸	99.2739	97.01	89.87	79.68	99.75
U^{235}	0.7204	2.96	10.0	20.0	0.25
U ²³⁴	0.0057	0.03	0.13	0.32	0.0005

Uranium Enrichment by % by Activity

	Тур	pical		Enriched	
	Natural	Commercial	10%	20%	Depleted
U^{238}	48.72	14.92	3.57	1.31	90.33
U^{235}	2.32	3.02	2.55	2.09	1.49
U^{234}	48.96	82.06	93.88	96.60	8.18

UNITS AND TERMINOLOGY

	"Spec	cial Units"	SI Units
Exposure	Roent	gen	Coulombs / kg
Dose	rad (0	.01 Gy)	Gray (100 rad)
Dose Equiv	rem (0).01 Sv)	Sievert (100 rem)
Activity	Curie	(2.22 E12dpm)	Becquerel(1dps)
1 Roentgen	=	2.58 E-4 coulomb / kg in air	
	=	1 esu / cm ³ in air	
1 rad	=	100 ergs / gm in any absorber	
1 Gray	=	10,000 ergs / gm in any absorber	
1 rem	=	1 rad x QF = 0.01 S	Sv.
Н	=	DQN (from ICRP 26)	
H (Dose Equiv.)	=	D (absorbed dose) x Q (quality factor) x N (any other modifying	
		factors)	

DEFINITIONS

Acute	any dose in a short period of time
Chronic	any dose in a long period of time
Somatic	effects in the exposed individual
Genetic	effects in the offspring of the exposed individual
Teratogenic	effects in the exposed unborn embryo/fetus
Stochastic	effects for which a probability exists and increases with increasing dose
Non-Stochastic	effects for which a threshold exists - effects do not occur below the
(deterministic)	threshold (examples; cataracts, erythema, epilation, acute radiation
	syndrome)

RADIATION INTERACTIONS

Charged Particles

Ionization, Excitation, Bremsstrahlung (β^{-}), Annihilation (β^{+})

Neutrons

Scattering (E > 0.025 eV)

Elastic (energy and momentum are conserved)

Inelastic (photon emitted)

Absorption (E \leq 0.025 eV)

Radiative Capture (n, γ)

Particle Emission (n, a) (n, p) (n, n)

Fission (n, f)

Gamma or X-ray photons

Photoelectric Effect (generally \leq 1 MeV)

Compton Scattering (generally 200 keV - 5 MeV)

Pair Production (minimum 1.022 MeV)

Scattered Photon

 $T' = T / [1 + T(1 - \cos \theta) / m_0 c^2]$

where $c^2 = 931.5 \text{ MeV} / \text{ amu}$

Energy Calculation

m = mass of electron = 5.4858 E-4 amu

Fraction of Energy Lost by Electrons through Bremsstrahlung in a medium

 $f = 0.0007 Z T_{e}$

where; $T_e = K. E. of electron, Z = atomic #$

Photon Attenuation: $I_x = I_0 e^{\mu x}$

Interaction Probability per gram:

Photoelectric $\propto Z^3 / E^3$

Compton independent of Z

Pair Production $\propto Z^1$

 μ_{Total} = μ_{pe} + μ_{cs} + μ_{cc}

 $W_{Air} = 33.9 \text{ eV per ion pair}$

Specific Ionization = S/W (i.p. / cm)

PUBLIC RADIATION DOSES

Average per capita US Dose	200 mrem / yr
Living in Los Alamos	327 mrem / yr
Flying from NY to LA	2.5 mrem / trip
Chest x-ray	10 mrem / exam
Full mouth dental x-ray	9 mrem / exam

The external dose rate for cosmic rays doubles for each mile increase in elevation.

BACKGROUND RADIATION

Cosmic	=	28 mrem / yr
Rocks	=	28 mrem / yr
Internal	=	36 mrem / yr
Medical x-rays	=	20 to 30 mrem / yr
Nuclear medicine	=	2 mrem / yr
TOTAL US Ave	*	120 mrem / yr
US Ave H_E from radon	=	200 mrem / yr

Ave H_E from medical x-ray procedures (in mrem per exam):

Skull 20, Upper GI 245, Hip 65, Chest 6, Kidney 55, Dental 54.5

NATURALLY OCCURRING RADIONUCLIDES

Primordial	Cosmogenic
K ⁴⁰	Tritium
Rb ⁸⁷	Be ⁷
Natural U and Th	C ¹⁴

Comparative Risks of Radiation Exposure

Health Risk		Estimated Days of Life Lost
Smoking 1 pack of cigarette	s / day	2370 days
20% overweight		985 days
Average US alcohol consur	nption	130 days
Home accidents		95 days
Occupational exposure	• 5.0 rem / ye	ar 32 days
	• 0.5 rem / ye	ar 3 days

RADON FACTS

1 working level	=	3 DAC Rn ²²² (including progeny)
	=	1.3 E5 MeV / liter of air a energy
	=	100 pCi / liter (1 E-7 μCi / ml)
1 working level-month	=	1 rem CEDE

EPA ACTION LEVELS FOR RESIDENCES

Concentration (pCi/L)	Sampling frequency
0 - 4	initial & no follow-up
4 - 20	one year & follow-up
20 - 200	3 month & follow-up
>200	implement radon reduction methods
Wells > 25 residences,	

must implement radon reduction method at water concentrations > 300 pCi / $\,L$

4 pCi / L in typical living area	~	1.03 working level-month \approx	1 rem
10,000 pCi / L in water	~	1pCi / L in air thru evaporation	

BIOLOGICAL EFFECTS OF RADIATION

Radiosensitivity Criteria	Rate of Reproduction	
	Age	
	Degree of Specialization	

Acute Radiation Effects

25 - 100 rad	Subclinical range, minor blood chemistry changes
100 - 200 rad	White blood cell (leukocyte) loss
> 250 rad	Acute Radiation Syndrome (Nausea, Chills, Epilation, Erythema)
> 350 rad	Hematopoietic Syndrome (Decrease in red blood cell production)
450 rad	LD 50 / 60
> 600 rad	Gastrointestinal Syndrome (Death of epithelial cells, Blood
	infection, Fluid loss)
1000 rad	LD 100 / 60
> 1000 rad	Central Nervous System Syndrome

Radiation Dose Risk

Report	Additional Cancer Deaths		
BEIR III, 1980	3 in 10,000 per 1 rem		
(also Reg Guide 8.29)			
BEIR V, 1990	800 in 100,000 per 10 rad		

RADIATION BIOLOGY

Relative Biological Effect	=	Dose of 250 kVp x-rays
		Dose of other radiation
Maximum survivable dose	~	1000 rem
Cancer mortality rate	~	900 excess deaths per 100,000 persons at 0.1 Sv

DOSIMETRY

	1 Bq 1 Gy	=	1 dps 1 joule	e / kg		=	2.7 E-11 Ci 100 rads
	H _T (Sv)	=	D(Gy)	x Q (Sv	/ Gy)		
Quality	/ Factors (Q) v	alues:					
	x-rays, beta, g	gamma		=	1		
	neutrons:	thermal		=	2		
		fast		=	10		
	alpha			=	20		
Effectiv	ve Dose Equiva	alent EDE	=	H_{E}	=	$\Sigma W_T H_T$	-
W⊤val	ues: gonad	s 2.5, breast 0.	15, red	marrow	/ 0.12, I	ung 0.1	2, thyroid 0.03,
	bone s	surface 0.03, re	mainde	r 0.3			
D.E. ra	ate (Sv / hr)=	0.15 A(TBq)E	/ r ²				
Neutro	n flux to dose i	rate conversion	:				
Fa	st: 1 mrem	/ hr per 6 n / cn	n ² -sec				
Slo	w: 1 mrem	/ hr per 272 n /	cm ² -se	с			

DOSE EQUIVALENT CALCULATIONS

1 Roentgen	=	2.58E-4C / kg	or	1 esu / cm ³
	=	87 ergs / g	or	2.082 E9 ip / cm ³
	=	7.02 E4 MeV / cm^3 in	air @ S	STP
or	=	98 ergs / g in tissue		
1 R/hr	~	1 E-13 Amperes / cm	1 ³	
1 rad	=	100 ergs / g in any absorber		
ρ_{air}	=	0.001293 g / cm ³		
W _{air}	=	33.7 eV		
1 Ampere	=	1Coulomb / sec		
STP_{air}	=	760mm Hg @ 0ºC	or	14.7lb / in ² @ 32 ⁰ F

INTERNAL DOSIMETRY

Calculating CDE ICRP 26/30

CDE	=	I / nALI x 50 rem
CDE	=	50 yr committed dose equivalent to irradiated tissue
I	=	Intake
nALI	=	non-stochastic ALI = 50 rem / h_{max}
\mathbf{h}_{\max}	=	greatest dose equivalent found in the exposure-to-dose conversion tables

Calculating CEDE

	CEDE	=	I/sALI x 5 rem
	CEDE	=	50 yr committed effective dose equivalent
	I	=	Intake
OF	R	CEDE	$= \Sigma^{n}_{i=1} W_{T}$
	CEDE	=	50 yr committed effective dose equivalent to individual tissue
	W_{T}	=	tissue weighting factor

Calculating DAC

DAC	=	ALI / 2000 hr x 1.2 E6 ml / hr
1 DAC	=	2.5 mrem CEDE if based on sALI OR 25 mrem (ICRP 26) CDE to an
		organ or tissue if based on nALI

Calculating DAC-hours

DAC Fraction	=	Σ_i (concentration / DAC) / PF
DAC fraction x time (hours)	=	DAC-hours

INTERNAL DOSIMETRY

Intake I(Bq)	=	A _t (Bq) / IRF _t
Body burden q _t	=	$q_0 e^{-\lambda eff t}$
CEDE or H_{50}	=	50 mSv x 1/ALI
TEDE	=	CEDE + Deep Dose Equivalent

INTERNAL DOSIMETRY

Effective Half-Life

 $t_{eff} = t_r \times t_b / (t_r + t_b)$ where; t_r = radioactive half-life t_b = biological half-life

Effective Removal Constant

 $\lambda_{eff} = \lambda_r + \lambda_b$

where; λ_{r} = decay constant = 0.693 / $t_{\mbox{\tiny 12}}$

 $\lambda_{\rm b}$ = biological removal constant - 0.693 / $t_{\rm b}$

Calculating Internal Dose (ICRP 30)

 $H_{50} (T \leftarrow S) = (1.6E-10)U_S SEE(T \leftarrow S)$

H₅₀ = 50 year dose equivalent commitment in sieverts

Where; SEE is the Specific Effective Energy modified by a quality factor for radiation absorbed in the target organ (T) for each transformation in the source organ (S) expressed in MeV/g.

SEE = $\Sigma Y \bullet E \bullet AF \bullet Q/M_T$

Where;	Y	=	yield of radiations per transformation
which,	1	-	
	Е	=	average energy of the radiation
	AF	=	absorbed fraction of energy absorbed in the target organ (T) per
			emission of radiation in the source organ (S)
	Q	=	quality factor
	\mathbf{M}_{T}	=	mass of the target organ
	Us	=	number of nuclear transformations in the source organ (S) during
			the time interval for which the dose is to be calculated

EQUIVALENT DOSE, EFFECTIVE DOSE, AND COMMITTED EFFECTIVE DOSE

ICRP 60 Equivalent Dose

- $H_T = \Sigma_R W_R D_{T,R}$
- H_T = equivalent dose in tissue T
- W_R = radiation weighting factor
- $D_{T,R}$ = absorbed dose averaged over tissue T due to radiation R

ICRP 60 Effective Dose

 $\mathsf{E} \quad = \quad \Sigma_\mathsf{T} \mathsf{W}_\mathsf{T} \mathsf{H}_\mathsf{T}$

- E = effective dose to the individual
- W_T = tissue weighting factor
- H_T = equivalent dose in tissue(s) T

ICRP 60 Committed Effective Dose

E(50) =	$\Sigma^{T=j}_{T=I} W_T H_T(50) + W_{remainder} \Sigma^{T=1} \underline{\Sigma}_{T=K} \underline{m}_T \underline{H}_T(50)$		
		$\Sigma^{T=1}_{T=K} m_T$	
E(50)	=	committed effective dose	
W _T	=	tissue weighting factor for tissues and organs T_i to T_j	
m⊤	=	mass of the remainder tissues T_{K} to T_1	
W _{remainder}	=	0.05 (the W_{T} assigned to the remainder tissues)	

ICRP 23 REFERENCE MAN

Daily Water Intake	=	2.2 liters / day
Breathing Rate	=	2 E4 ml / min

There are approximately 10^{13} cells in the human body.

There are 140 g of potassium in standard man, 125 nCi is K⁴⁰ which results in 0.25 mrem/wk (13 mrem/yr) to the whole body. An additional 15 mrem/yr will occur when using a salt substitute.

RADIATION WEIGHTING FACTORS¹ (ICRP 60)

Type and Energy Range ²	Radiation Weighting Factor, $W_{\mbox{\tiny R}}$
Photons, all energies	1
Electrons and muons, all energies ³	1
Neutrons, <10 keV	5
10 keV to 100 kev	10
100 keV to 2 MeV	20
2 MeV to 20 MeV	10
> 20 MeV	5
Protons, other than recoil protons, energy >	2 MeV 5
Alpha particles, fission fragments, heavy nu	iclei 20

¹ All values relate to the radiation incident on the body or, for internal sources, emitted from the source.

² The choice of values for other radiation is discussed in Annex A of Publication 60.

³ Excluding Auger electrons emitted from nuclei bound to DNA.

ICRP 60 Tissue Weighting Factors

Tissue or organ	Tissue weighting factor, W_{T}
Gonads	0.20
Bone marrow (red)	0.12
Colon	0.12
Lung	0.12
Stomach	0.12
Bladder	0.05
Breast	0.05
Liver	0.05
Oesophagus	0.05
Thyroid	0.05
Skin	0.01
Bone surface	0.01
Remainder	0.05

CALCULATING TODE AND TEDE

TEDE	=	DDE	+	CEDE
TODE	=	DDE	+	CDE

- TEDE = total effective dose equivalent
- TODE = total organ dose equivalent
- DDE = deep dose equivalent
- CDE = 50 year committed dose equivalent to a tissue or organ
- CEDE = 50 year committed effective dose equivalent

DOSE EQUIVALENT LIMITS & POSTING REQUIREMENTS (10CFR20 & 10CFR835)

Dose Equivalent	Annual Limit (rem)
TEDE	5
TODE	50
LDE	15
SDE,WB	50
SDE, ME	50
TEDE (general public)	0.1

DOSE EQUIVALENT MEASUREMENT

Abbreviations from USNRC Reg. Guide 8.7

Measuremen	t Depth for External Sources (cm)	Density Thickness (mg / cm ²)
TEDE	1	1000
TODE	1	1000
LDE	0.3	300
SDE, WB ¹	0.007	7
SDE, ME ²	0.007	7

¹ SDE, WB is the shallow dose equivalent to the skin of the whole body.

² SDE, ME the shallow dose equivalent to a major extremity.

EFFECTS OF RADIATION EXPOSURE

Gastro-Intestinal radiation syndrome: pathophysiology from gastro-intestinal syndrome is of greater consequence from exposure to neutron radiation fields than the hematopoetic syndrome.

Note: RBE (GI syndrome, neutron rad) = 2.4

The sooner the onset of vomiting and/or diarrhea the higher the expected dose.

γ , x-ray absorbed dose LD $_{50}$ (rad)	acute effects	approximate time to onset
10,000 - 15,000	neuro-vascular	hours
500 - 1,200	GI	days
250 - 500	hematopoetic	weeks

Plutonium Exposure – Acute Effects

0.1 to 0.9 μ Ci/g Pu²³⁹ in lung tissue caused acute-fatal effects in dogs 55 to 412 days postexposure. Lung doses were on the order of 4,000 to 14,000 rad.

Table of the Elements

Z#	Element	Symbol	Z#	Element	Symbol
89	Actinium	Ac	63	Europium	Eu
13	Aluminum	AI	100	Fermium	Fm
95	Americium	Am	9	Fluorine	F
51	Antimony	Sb	87	Francium	Fr
18	Argon	Ar	64	Gadolinium	Gd
33	Arsenic	As	31	Gallium	Ga
85	Astatine	At	32	Germanium	Ge
56	Barium	Ва	79	Gold	Au
97	Berkelium	Bk	72	Hafnium	Hf
4	Beryllium	Ве	105	Hahnium	Ha
83	Bismuth	Bi	2	Helium	He
5	Boron	В	67	Holmium	Ho
35	Bromine	Br	1	Hydrogen	Н
48	Cadmium	Cd	49	Indium	In
20	Calcium	Са	53	lodine	I
98	Californium	Cf	77	Iridium	lr
6	Carbon	С	26	Iron	Fe
58	Cerium	Ce	36	Krypton	Kr
55	Cesium	Cs	57	Lanthanum	La
17	Chlorine	CI	103	Lawrencium	Lr
24	Chromium	Cr	82	Lead	Pb
27	Cobalt	Со	3	Lithium	Li
29	Copper	Cu	71	Lutetium	Lu
96	Curium	Cm	12	Magnesium	Mg
66	Dysprosium	Dy	25	Manganese	Mn
99	Einsteinium	Es	101	Mendelevium	Mv
68	Erbium	Er			

Table of the Elements

Z#	Element	Symbol	Z#	Element	Symbol
80	Mercury	Hg	62	Samarium	Sm
42	Molybdenum	Mo	21	Scandium	Sc
60	Neodymium	Nd	106	Seaborgium	Sg
10	Neon	Ne	34	Selenium	Se
93	Neptunium	Np	14	Silicon	Si
28	Nickel	Ni	47	Silver	Ag
41	Niobium	Nb	11	Sodium	Na
7	Nitrogen	Ν	38	Strontium	Sr
102	Nobelium	No	16	Sulfur	S
76	Osmium	Os	73	Tantalum	Та
8	Oxygen	0	43	Technetium	Тс
46	Palladium	Pd	52	Tellurium	Те
15	Phosphorus	Р	65	Terbium	Tb
78	Platinum	Pt	81	Thallium	TI
94	Plutonium	Pu	90	Thorium	Th
84	Polonium	Po	69	Thulium	Tm
19	Potassium	К	50	Tin	Sn
59	Praseodymium	Pr	22	Titanium	Ti
61	Promethium	Pm	74	Tungsten	W
91	Protactinium	Ра	92	Uranium	U
88	Radium	Ra	23	Vanadium	V
86	Radon	Rn	54	Xenon	Xe
75	Rhenium	Re	70	Ytterbium	Yb
45	Rhodium	Rh	39	Yttrium	Y
37	Rubidium	Rb	30	Zinc	Zn
44	Ruthenium	Ru	40	Zirconium	Zr
104	Rutherfordium	Rf			

Relative locations of the Products of Various Nuclear Processes					He ³	in	α	in	
		β	out	р	in	d	in	t	in
		η	out		ginal cleus	η	in	-	eutron proton
t	out	d	out	р	out	β+ ε	out	tt α	deuteron riton alpha
α	out	He ³	out					β ⁺ ε	beta positron electron capture

Use this chart along with the Table of the Elements to determine the progeny (and ancestor) of an isotope.

For example; we know Pu-238 is an alpha emitter. The alpha decay mode tells us the mass # decreases by 4 (238 goes to 234) and the Z # decreases by two (94 goes to 92). The element with a Z # of 92 is Uranium. Pu-238 decays to U-234.

As another example; we know CI-36 is a beta emitter. The beta decay mode tells us the mass # stays the same and the Z # increases by one (16 goes to 17). The element with a Z # of 17 is Argon. CI-36 decays to Ar-36.

RADIOACTIVITY

$_{z}X^{A}$	Z	=	atomic # (number of protons)
	Х	=	element
	А	=	mass # (number of protons and neutrons)

Decay Modes

Alpha	$_{z}X^{A}$	\rightarrow	_{Z-2} X ^{A-4} + α
Beta Minus	$_{z}X^{A}$	\rightarrow	$_{Z+1}X^{A} + \beta^{-}$
Beta Plus (Positron)	$_{z}X^{A}$	\rightarrow	$_{Z-1}X^{A} + \beta^{+}$
Electron Capture	$_{z}X^{A}$	\rightarrow	$_{Z-1}X^{A}$

Radioactive Decay Equation is; $A_t = A_o e^{-\lambda t}$

REPORTING RADIOLOGICAL DATA

For Minimum Detectable				
Activity (MDA)		$MDA = \underline{k^2 + 2k\ddot{0} R_{\underline{B}} x t_{\underline{S+B}} x Eff x (1 + t_{\underline{S+B}} / t_{\underline{B}})}$		
		$t_{S+B} \times Eff$		
k (for 95%)	=	1.645		
t _{S+B}	=	sample count time		
t _B	=	background count time		
R _B	=	background count rate		
Eff	=	efficiency of the detector (expressed as a decimal)		
R_{S+B}	=	sample count rate		

MDA when background and sample count times are one minute and background is displayed in DPM.

$$MDA = \frac{2.71 + 4.65\ddot{\theta} R_B \times Eff}{Eff}$$

MDA when background count time is ten minutes and sample count time is one minute and background is displayed in DPM.

$$MDA = \frac{2.71 + 3.45\ddot{0} \overline{R_B \times Eff}}{Eff}$$

MDA when background and sample count times are one minute and background is displayed in CPM.

$$MDA = \underline{2.71 + 4.65\ddot{\theta} R_{B}}$$
Eff

MDA when background count time is ten minutes and sample count time is one minute and background is displayed in CPM.

$$MDA = \frac{2.71 + 3.45\ddot{0} R_{B}}{Eff}$$

Surface Contamination Correction Factors for Probe Area

The contamination reporting requirements in 10CFR835 call for survey results to be stated as dpm/100cm² or as dpm per surface area for items or spots smaller than 100cm².

Detector surface areas may be; 1) smaller than 100cm², 2) exactly 100cm², or 3) larger than 100cm². Areas of contamination may be smaller than 100cm², or exactly 100cm², or larger than 100cm². Use the following matrix to determine how to perform the probe surface area and contamination surface area correction factors.

1) Detector surface area smaller than 100 cm²

A. For a probe with a surface area smaller than 100cm², no correction factor is needed for areas of contamination equal to the probe surface area (report the contamination as dpm per the probe surface area).

 $DPM/probe cm^2 = Indicated DPM$

B. If the item or spot of contamination is smaller than the probe surface area, then report the contamination as the measured dpm per that surface area.

DPM/spot cm ²	=	Indicated DPM		
		spot surface area		

C. If the item or spot of contamination is equal to or greater than 100cm², then correct the measured dpm for probe surface area vs 100cm² and report the contamination as the corrected dpm per 100cm².

 $DPM/100cm^2$ = Indicated DPM x _____100cm^2

detector surface area

D. If the item or spot of contamination is larger than the probe surface area, but smaller than 100cm², then average the contamination over the surface area and report the contamination as the summed measured dpm per that surface area.

> DPM/spot cm² = Average DPM x <u>Spot Surface Area</u> Detector Surface Area

Surface Contamination Correction Factors for Probe Area

- 2) Detector surface area exactly 100 cm²
 - **A.** For a probe with a surface area of 100cm², no correction factor is needed for areas of contamination equal to or larger than 100cm².

 $DPM/100cm^2$ = Indicated DPM

B. If the item or spot of contamination is smaller than 100cm², then report the contamination as the measured dpm per that surface area.

DPM/spot cm² = <u>Indicated DPM</u> spot surface area

- **3)** Detector surface area larger than 100 cm²
 - A. For a probe with a surface area greater than 100cm², no correction factor is needed for areas of contamination of exactly 100cm².

 $DPM/100cm^2$ = Indicated DPM

B. If the item or spot of contamination is smaller than 100cm², then report the contamination as the measured dpm per that surface area.

 $DPM/spot \ cm^2 =$ Indicated DPM

spot surface area

C. If the item or spot of contamination is greater than 100cm², then correct the measured dpm for probe surface area as 100cm² and report the contamination as the corrected dpm per 100cm².

 $DPM/100cm^2$ = Indicated DPM x 100 cm²

Detector Surface Area

Detector Efficiency

Calculate the efficiency of a detector as follows.

Efficiency = CPM / DPM

Alpha to Beta Crosstalk

Alpha to beta crosstalk is that portion of counts from alpha particles that are detected as beta particles by a detector. It is usually expressed as a percentage.

Using an alpha source;

 α to β crosstalk = <u>counts detected as beta particles</u>

counts detected as alpha particles

Multiply by 100 to express the crosstalk as percent.

Beta to Alpha Crosstalk

Beta to alpha crosstalk is that portion of counts from beta particles that are detected as alpha particles by a detector. It is usually expressed as a percentage.

Using an alpha source;

 β to α crosstalk = <u>counts detected as alpha particles</u>

counts detected as beta particles

Multiply by 100 to express the crosstalk as percent.

Correction Factor for Alpha and Beta Energy vs Efficiency

If you are surveying for an isotope whose energy is different than what the instrument was calibrated with, then use a calibrated source with an energy similar to that being surveyed for;

CF (**C**orrection **F**actor) = <u>Calibrated Source DPM</u>

DPM indicated by instrument

Multiply your instrument indication by the calculated CF.

Inverse Square Law Calculation

The inverse square law provides a simple way to calculate the exposure from a point gamma source at different distances.

Exposure Rate ₁ x D ₁ ²		= Exposure Rate ₂ x D_2^2
where;		
Exposure Rate ₁	=	Measured (or known) exposure rate
D_1^2	=	Distance from source for the measured or known exposure rate
Exposure Rate ₂	=	Exposure rate to be calculated
D_{2}^{2}	=	New distance from the source

Shallow Dose Correction Factor

In accordance with 10CFR835 deep dose equivalent will be used for posting. Shallow dose equivalent will be reported separate from deep dose equivalent. Deep dose equivalent is the sum of the gamma and neutron deep dose equivalents. Shallow dose includes low-energy photons and beta particles. Alpha particles are not included in shallow dose. The need to report a shallow dose for a survey is determined by this equation;

If the Open Window Reading divided by the Closed Window Reading is equal to or greater than 1.2, then perform a shallow dose survey.

Calculate the shallow dose rate using this equation;

(Open Window Reading - Closed Window Reading) x Correction Factor

Stay Time Calculation

Stay-time calculations are typically used to determine how long an individual can remain in an area with elevated radiation fields until they reach some pre-determined dose limit.

	Stay-time	=	Allowable exposure/e	xposu	re rate
Example:	Stay-time	=	100 mR / 25 mR/hr	=	4 hours

Calculating Exposure Rate in an Air-Filled Ionization Chamber

Х	=	I/m[1/	(2.58E	-4 C / kg-R)]
Х	=	exposur	e rate	R / sec)
I	=	current (ampei	res)
m	=	mass of	air in d	chamber (kg)
Note:	1 ampe	re =	=	1 Coulomb / second

Calculating Percent Resolution of a Gamma Spectroscopy Detector

%R =	FWH	M / peak energy x 100 = percent resolution
where;		
FWHM	=	peak width at full width half-max peak height (keV)
peak energy	=	photopeak energy of interest (keV)

Calculating True Count Rate Based on Resolving Time of a Gas-Filled Detector

R_C	=	R ₀ / (1 - R ₀ Y)
wher	e;	
R_C	=	true count rate
R_0	=	observed count rate
Y	=	resolving time

CALCULATING SPECIFIC GAMMA-RAY CONSTANT (G) FOR SOURCE ACTIVITY (A)

$$\Gamma$$
 = $\phi E \gamma (\mu_{en} / \rho)_{air} e / W$

where;

Г	=	specific gamma constant (R-cm ² / hr-A)		
φ	=	photon fluence rate (γ / cm ² -hr)		
Εγ		=	gamma photon energy (MeV)	
(μ _{en} / ρ)	=	density thickness of air (g / cm ²)	
е		=	electron charge (Coulombs)	
W		=	average amount of energy to produce an ion pair in air (eV)	

CALCULATING PHOTON FLUENCE RATE (j) FROM A POINT SOURCE

φ	=	$AY / 4\pi r^2$
where;		
φ	=	photon fluence rate (γ / cm ² -hr)
А	=	source activity (decay per hr)
Υ	=	photon yield (γ / decay)
r	=	distance from point source (cm)

CALCULATING EXPOSURE RATE (X) FROM A POINT SOURCE

X (R/hr)	=	$\Gamma A / r^2$
where;		
Γ	=	specific gamma ray constant (R/hr @ 1 meter per Ci)
A	=	activity of source in curies
r	=	distance from source in meters

CALCULATING DOSE RATE TO AIR (D) FROM A POINT BETA SOURCE

D =	300 A / d ²	2
D =	300 A / d ²	

where;

- D = dose rate (rad / hr)
- A = source activity in curies
- d = distance from source in feet

CALCULATING EXPOSURE RATE (X) FROM A LINE SOURCE

=

X₂ (d₂)

 $X_2 (d_2)^2$

 $X_1 (d_1) =$

Inside L / 2:

Outside L / 2:

2: $X_1 (d_1)^2$

where; d_1 = distance from source at location 1

 d_2 = distance from source at location 2

L = length of line

Note that outside of L/2 the equation is the same as the inverse square law.

X (R/hr)	=	$\Gamma A_L / R x \tan^{-1}(L / R)$
where;		
Γ	=	R/hr @ 1 meter per Ci
AL	=	activity per unit length (curies per meter)
R	=	distance from line in meters
L	=	length of line in meters

CALCULATING EXPOSURE RATE (X) FROM A DISK SOURCE

X (R/hr)	=	$\pi A_a \Gamma \times \ln[(L^2 + R^2) / R^2]$
where;		
Γ	=	R/hr @ 1 meter per Ci
A _a	=	activity per unit area (curies per sq. cm)
L	=	diameter of source surface in centimeters
R	=	distance from source surface in centimeters

6CEN

The 6CEN equation can be used to calculate the exposure rate in R/hr at one foot for x-ray and gamma radiation point sources with energies between 70 KeV and 2 MeV.

R/hr at 1 foot	=	6CEN
where;		
С	=	curies of radioactive material
E	=	photon energy in MeV
Ν	=	abundance of that photon (expressed as a decimal)

Calculating Airborne Radioactivity (long-lived)

C _S =	$R_N / (V \times \varepsilon \times SA \times CE \times CF)$						
where;	C_{S}	=	activity concentration at end of sample run time				
	R_{N}	=	net counting rate				
	V	=	sample volume				
	8	=	detector efficiency				
	SA	=	self-absorption factor				
	CE	=	collection efficiency				
	CF	=	conversion from disintegrations per unit time to activity				

Calculating Airborne Radioactivity (short-lived)

$$C_{S} = R_{N} / [V x \varepsilon x SA x CE x CF x (1-e^{-\lambda ts}) x (e^{-\lambda td})]$$

where;

t_s = sample count time

t_d = time elapsed between end of sample run time and start of sample count time

RESPIRATORY PROTECTION FACTORS (PF) 10CFR20

Device	Mode	Particulates	Vapors	PF
Air-purifying half-mask	D	Y	Ν	10
Air-purifying full-face	D	Y	Ν	50
Air-purifying full-face	PP	Y	Ν	1000
Supplied-air hood	PP	Y	Y	1000*
Supplied-air full-face	PP	Y	Y	2000
SCBA	D	Y	Ν	50
SCBA	PD	Y	Y	10,000

* 2000 for supplied-air hood if run at max flow rate with calibrated flow gauge.

Lung Deposition from ICRP 30

AMAD (μ)	NP (Naso-pharanx)	TB (Trachea-bronchus)	P (Lungs) Pulmonary
0.1	0.01	0.08	0.61
1	0.3	0.08	0.25
10	0.9	0.08	0.04
		Page 41	

Air Monitoring

Concentration

Concentration is activity per volume of air and may be stated as dpm / cubic meter, μ Ci / ml, or Bq / cubic meter. DAC (**D**erived **A**ir **C**oncentration) is another way to express airborne radioactivity concentrations as relative hazards.

DPM	=	<u>Sample CPM</u> Eff (CPM / DPM)
μCi	=	2.22 E6 DPM
1 DPM / M ³	=	4.5 E-13 μCi / ml
1 μCi / ml	=	2.22 E12 DPM / M ³
Becquerel (Bq)	=	DPS
DPM / M ³	=	<u>CPM</u> Eff (CPM / DPM) x total sample volume in M ³
μCi / ml	=	<u>CPM</u> Eff x 2.22 E6 DPM / μCi x total sample volume in ml
Bq / M ³	=	$\frac{\text{CPM}}{\text{Eff x 60 DPM / Bq x total sample volume in M}^3}$
DAC	=	<u>μCi / ml</u> μCi / ml per DAC (DAC Factor)

CONCENTRATION, DAC, AND DAC-HR

To calculate concentration you need the CPM (or DPM) and the total air sample volume.

- **1.** Divide the CPM by the efficiency (expressed as a decimal) to get DPM.
- **2.** Divide the DPM by 2.22 E6 DPM / μ Ci to get μ Ci.
- **3.** Multiply the air sampling rate by the sampling time to get the total air sample volume.
 - For a FAS running for 1 week the total air sample volume is 168 hours times 2
 CFM (cubic feet per minute).
 - B. Multiply 168 hours times 60 minutes per hour times 2 CFM. This equals 20,160 cubic feet.
 - C. Multiply the 20,160 cubic feet by 28,316 ml / cubic foot to get the total milliliters.This equals 5.7 E8 milliliters.
 - D. Use a similar set of calculations for a Giraffe covering a job for a short period of time, obviously it would not be sampling for a full week, so the sample time might be 2 or 4 hours.
- **4.** Divide the μ Ci by the sample volume to get concentration in μ Ci / ml.
- 5. Divide the μ Ci / ml by the DAC factor from 10CFR835 to get the concentration in numbers of DACs.
- 6. Multiply the numbers of DACs by the exposure time (how long a worker was in the area in hours) to get the DAC-HRs.

Example Calculations for Airborne Radioactivity

A Giraffe sampled the working area for 2 hours, sampling at 2 CFM. At the end of the job you sent the filter to the count lab and they identified 36 DPM of Pu^{239} . What was the concentration in μ Ci / ml, DPM / M³, and DACs, and what are the DAC-HRs?

1. We divide the DPM from the count lab by 2.22 E6 DPM / μ Ci to get μ Ci.

36 DPM / 2.22 E6 DPM / mCi = 1.6 E-5 mCi

- 2. Multiply the air sampling rate by the sampling time to get the total air sample volume.
 - A. The Giraffe ran for 2 hours at 2 CFM. Multiply 2 hours times 60 minutes per hour times 2 CFM.

2 hours x 60 min / hr x 2 CFM = 240 cubic feet

- B. Multiply the 240 cubic feet by 28,316 ml / cubic foot to get the total milliliters.
 240 cubic feet x 28,316 ml / cubic foot = 6.8 E6 ml
- C. Or, multiply the 240 cubic feet (CF) by 0.028316 cubic meters / cubic foot to get the total cubic meters (M³).
 240 cubic feet x 0.028316 M³ / CF = 6.8 M³
- **3.** Divide the μ Ci by the sample volume to get concentration in μ Ci / ml.

1.6 E-5 **m**Ci / 6.8 E6 ml = 2.4 E-12 **m**Ci / ml

4. Or, divide the DPM by the sample volume in M^3 to get DPM / M^3 .

36 DPM / $6.8M^3 = 5.3$ DPM / M^3

5. Divide the μ Ci / ml by the DAC factor from 10CFR835 to get the concentration in numbers of DACs.

2.4 E-12 mCi / ml divided by 2 E-12 mCi / ml per DAC = 1.2 DAC

6. Multiply the numbers of DACs by the exposure time (how long a worker was in the area in hours) to get the DAC-HRs.

1.2 DAC times 2 hours = 2.4 DAC-HRs

SURFACE AREA CALCULATIONS

Triangle A (area) = $\frac{1}{2} \times b \times h$; where b is the base and h is the height of the triangle (you don't need to know the length of the sides, just the base and the height)

Rectangle A (area) = $a \times b$; where a and b are the lengths of the sides

Parallelogram (a 4-sided figure with opposite sides parallel)

A (area) = a x h; or $a x b x \sin \theta$;

where a and b are the length of the sides, h is the altitude (or vertical height), and θ is the angle between the sides

Trapezoid (a 4-sided figure with two sides parallel)

A (area) = $\frac{1}{2} x h (a + b)$; where a and b are the length of the sides and h is the altitude

Regular polygon of *n* sides

A (area) = $1/4 \times n \times a^2 \times \text{cotangent } (180^{\circ} / n);$ where a is the length of a side and *n* is the number of sides

Circle A (area) = $\pi x r^2$; or 1/4 x $\pi x d^2$;

where r is the radius and d is the diameter

Cube A (area) = $6 \times a^2$; where a is the length of a side

Cylinder A (area) = $2 \times \pi \times r \times h$;

where r is the radius and h is the length of the height

Sphere A (area) = $4 \times \pi \times r^2$; or $\pi \times d^2$; where r is the radius and d is the diameter

Page 45

VOLUME CALCULATIONS

Cube V (volume) = a^{3} ; where a is the length of a side

Box V (volume) = $w \times I \times h$; where w is the width, I is the length, and h is the height

Cylinder V (volume) = $\pi x r^2 x h$;

where r is the radius and h is the length of the height

Sphere	V (volume)	=	4/3 x π x r ³ ;		
where r is the radius					
or	V (volume)	=	1/6 x πx d³;		
where d is the diameter					

Conversions

1 ml (milliliter)	=	1 cc (cubic centimeter or cm ³)
1000 ml	=	1 liter
1000 liters	=	1 cubic meter (M ³)
1 cubic foot (CF)	=	28.316 liters or 0.028316 M ³
1 M ³	=	35.315 CF

GAMMA AND NEUTRON HALF-VALUE LAYERS

Half-Value Layers in cm for Varying Photon Energies for Various Materials					
	10 to 100 KeV	100 to 500 KeV	1 MeV		
Concrete	6.56	10.83	12.05		
Lead	0.03	0.50	1.31		
DU	0.02	0.22	0.65		
Tungsten	0.02	0.38	0.87		
Steel / Iron	0.36	2.73	3.45		
Tin	0.08	1.92	3.27		
Aluminum	0.44	9.78	10.94		
Water	23.83	26.15	28.71		
	1 to 1.5 MeV	1.5 to 2 MeV	> 2 MeV		
Concrete	13.64	14.41	19.65		
Lead	1.88	2.12	2.62		
DU	0.98	1.12	1.17		
Tungsten	1.15	1.39	1.62		
Steel / Iron	3.78	4.10	4.41		
Tin	3.68	4.17	4.88		
Aluminum	12.32	13.13	17.50		
Water	31.07	31.88	57.75		

Half-Value Lavers in cm for Varving Photon Energies for Various Materials

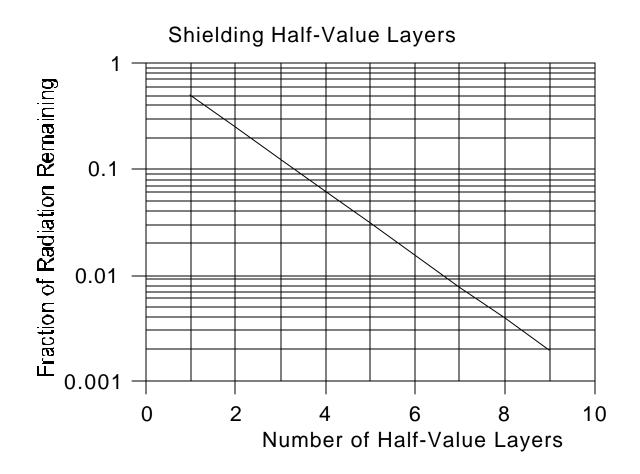
These numbers were generated using NIST mass attenuation coefficients. Buildup is included.

HVL in centimeters for fast neutrons

Energy in MeV	1	5	10	15
Polyethylene	3.7	6.1	7.7	8.8
Water	4.3	6.9	8.8	10.1
Concrete	6.8	11	14	16
Damp soil	8.8	14.3	18.2	20.8

SHIELDING CALCULATIONS

CALCULATING NEUTRON SHIELD THICKNESSES


I	=	l₀e ^{-σNx}
where; I	=	final neutron flux rate
l _o	=	initial neutron flux rate
σ	=	shield cross section in square centimeters
Ν	=	number of atoms per cm ³ in the shield
х	=	shield thickness in centimeters

CALCULATING GAMMA SHIELD THICKNESSES

"Good	"Good Geometry" (narrow beam)								
	I	=	$I_0 e^{-\mu x}$						
	I	=	shielde	ed expo	sure rat	te			
	I ₀	=	unshie	lded ex	posure	rate			
	μ	=	linear a	attenua	tion coe	efficient			
	х	=	shield	thickne	SS				
"Poor (Geome	try" (bro	ad bea	m)					
	I	=	B x I ₀ e	-µх	OR	$I_0 e^{-\mu enx}$			
	В	=	buildup	o factor					
	μen	=	linear e	energy	absorpt	ion coe	fficient		
Half-Va	alue La	yer (HV	L)	=	ln 2 / μ	l			
Tenth-	Value L	.ayer (T	VL)	=	ln 10 /	μ			
Transr	nission	Factor	(F)	=	I / I ₀	OR	F	=	e ^{-µx}

BETA SHIELDING

Bremsstrahlung Fraction:						
f	=	3.5 (low Z) or 5 (high Z) x 10^{-4} ZE _{max}				
Activity _{gamma}	=	f x Activity _{beta}				

Gamma Shielding

How to use the graph.

Given: A Co⁶⁰ source reading 120 mrem/hr at 30 cm

Find: the number of half-value layers to reduce the exposure rate to 5 mrem/hr at 30 cm

Divide 5 mrem/hr by 120 mrem/hr = 0.042

Locate 0.042 on the vertical axis and move across to where the slanted line crosses 0.042, then move vertically down to the "Number of Half-Value Layers" horizontal axis, this value is approximately 4.6

Pick a shielding material from page 47 and multiply the number of half-value layers by the cm thickness in the shielding table to obtain the thickness required.

Neutron Shielding

How to use the graph.

Given: A 5 MeV neutron source reading 12,000 n/cm²-sec at 30 cm Find: the number of half-value layers to reduce the flux rate to 200 n/cm²-sec at 30 cm

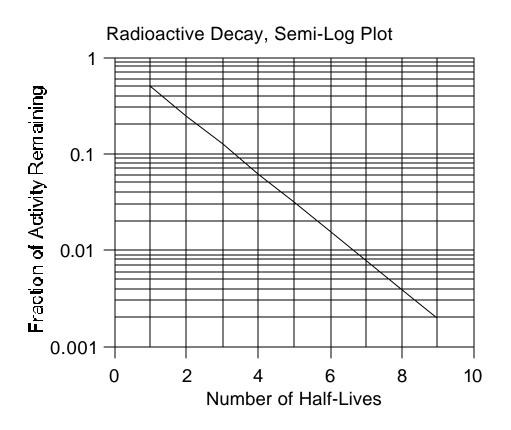
Divide 200 n/cm²-sec by 12,000 n/cm²-sec = 0.0167

Locate 0.0167 on the vertical axis and move across to where the slanted line crosses 0.0167, then move vertically down to the "Number of Half-Value Layers" horizontal axis, this value is approximately 5.9

Pick a shielding material from page 47 and multiply the number of half-value layers by the cm thickness in the shielding table to obtain the thickness required.

Shielding Materials

α	N/A
β ⁻	low Z, such as plastic or aluminum
γ	high Z, such as lead
mixed β^{-}/γ	low Z, then high Z
neutron	hydrogenous material to thermalize (such as polyethylene) then neutron
	absorber (such as Cd, B, Li, Hf), then high Z to absorb "capture gammas"


CALCULATING TRANSMISSION FACTOR (F) FOR SHIELDING AN X-RAY DEVICE

F	=	Pd²/WUT (BCF)
Ρ	=	permissible dose rate (mrem/wk)
d	=	distance to point of interest
W	=	workload (mA-min / wk)
U	=	use factor

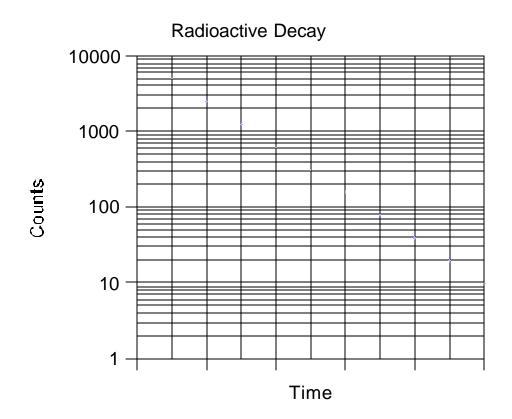
- T = occupancy factor
- BCF = beam conversion factor $R / mA m^2$)

DENSITY OF VARIOUS MATERIALS IN GRAMS PER CUBIC CENTIMETER

Snow (fresh)	0.2
Wood (cedar)	0.4
Wood (pine)	0.5
Wood (oak)	0.7
Paper	0.9
Polyethylene	0.9
Water	1.0
Rubber	1.1
Linoleum	1.2
Polycarbonate	1.2
PVC	1.3
Earth (packed)	1.5
Sandstone	2.2
Concrete	2.4
Aluminum	2.6
Glass	2.6
Granite	2.7
Limestone	2.7
Marble	2.7
Titanium	3.5
Iron	7.8
Steel	7.8
Bronze	8.2
Brass	8.4
Copper	8.8
Lead	11.4
Tungsten	19.6

Radioactive Decay Equation is; $A_t = A_o e^{-\lambda t}$

Example of how to use this graph.


Given: 10 mCi of P^{32} with a half-life of 14.3 days

Find: the activity remaining after 125 days

Determine the number of half-lives during the decay by dividing 125 by 14.3 = 8.74

Locate 8.74 on the horizontal axis and move up to where the radioactive decay line crosses 8.74, then move horizontally to the "Fraction of Activity Remaining" vertical axis, this value is approximately 0.002

Multiply the original activity, 10 mCi, by 0.002; the activity remaining after 125 days is 0.02 mCi (20 μ Ci)

Example of how to use this graph.

Given: An unknown isotope

Find: the half-life of the isotope

Perform an initial net sample count, then recount the sample at regular intervals, perhaps every 10 minutes for a short-lived isotope.

Plot the sample counts on the vertical axis.

Draw a line connecting the sample counts. It should be a straight line, if it is not then it may be due to counting errors.

Find where the line crosses half the initial count and then go down to the horizontal axis, this is the half-life.

Table 1 of DOE 5400.5 and Appendix A of the LANL RPP

Surface Activity Guidelines

Allowable Total Residual Surface Contamination (dpm/100cm²)

Radionuclides	Average	Maximum	Removable
Group 1: Transuranics, ¹²⁵ I, ¹²⁹ I, ²²⁷ Ac, ²²⁶ Ra, ²²⁸ Ra, ²²⁸ Ra, ²²⁸ Th, ²³⁰ Th, ²³¹ Pa	100	300	20
Group 2: Th-natural, ⁹⁰ Sr, ¹²⁶ I, ¹³¹ I, ¹³³ I, ²²³ Ra, ²²⁴ Ra, ²³² U, ²³² Th	1,000	3,000	200
Group 3: U-natural, ²³⁵ U, ²³⁸ U, and associated decay products, alpha emitters	5,000	15,000	1,000
Group 4: Beta/gamma emitters (radionuclides with decay modes other than alpha emission or spontaneous fission) except ⁹⁰ Sr and others noted above	5,000	15,000	1,000
Tritium (applicable to surface and subsurface)	N/A	N/A	10,000

Appendix D of 10CFR835

Nuclide	Removable	Total (fixed + removable)
Natural U, ²³⁵ U, ²³⁸ U, and associated decay Products	1,000 alpha dpm/100 cm²	5,000 alpha dpm/100 cm²
Transuranics, ²²⁶ Ra, ²²⁸ Ra, ²³⁰ Th, ²²⁸ Th, ²³¹ Pa, ²²⁷ Ac, ¹²⁵ I, ¹²⁹ I	20 dpm/100 cm ²	500 dpm/100 cm ²
Natural Th, ²³² Th, ⁹⁰ Sr, ²²³ Ra, ²²⁴ Ra, ²³² U, ¹²⁶ I, ¹³¹ I, ¹³³ I	200 dpm/100 cm ²	1,000 dpm/100 cm ²
Beta/gamma emitters (nuclides with decay modes other than alpha emission or spontaneous fission) except ⁹⁰ Sr and others noted above	1,000 beta/gamma dpm/100 cm²	5,000 beta/gamma dpm/100 cm ²
Tritium organic compounds, surfaces contaminated by HT, HTO, and metal tritide aerosols	10,000 dpm/100 cm²	10,000 dpm/100 cm²

POSTING

Radiological Controlled Area (RCA)

Note: For areas where the potential exists for both internal dose and external dose, area designation must consider the total effective dose equivalent (TEDE).

RCA for external radiation - An individual is not expected to receive more than 0.1 rem during a year from external radiation.

RCA for contamination - A reasonable potential exists for contamination to occur at levels in excess of those specified in Appendix A,

or

An individual is not expected to receive more than 0.1 rem committed effective dose equivalent (CEDE) during a year from intakes.

RCA for DU shrapnel - DU exists as a result of explosive testing.

RCA for volume contamination - A reasonable potential exists for the presence of volumecontaminated materials that are not individually labeled.

Radiation Area

Any area where an individual could exceed a deep dose equivalent of 5 mrem in one hour at 30 cm from the source or the surface the radiation penetrates.

High Radiation Area

Any area where an individual could exceed a deep dose equivalent of 100 mrem in one hour at 30 cm from the source or the surface the radiation penetrates.

Very High Radiation Area

Any area where an individual could exceed a deep dose equivalent of 500 rad in one hour at 1 meter from the source or the surface the radiation penetrates.

POSTING

Contamination Area

Any area where removable contamination levels exceed or are likely to exceed those specified in Appendix A.

High Contamination Area

Any area where removable contamination levels exceed or are likely to exceed100 x those specified in Appendix A..

Airborne Radioactivity Area

Any area where airborne concentrations:

- are > (or likely to exceed) the applicable DAC values, or
- would result in an individual (without respiratory protection) being exposed to > 12 DAChours in a week.

Radioactive Materials Area

Accessible areas where items or containers of radioactive materials in quantities exceeding the values provided in Appendix 4A are used, handled, or stored.

INSTRUMENT USE

- 1. Select an instrument and / or detector appropriate for the isotope(s) to be surveyed for.
- **2.** Check instrument and detector for a valid calibration sticker and for damage that would prevent it (them) from operating acceptably.
- **3.** Check the battery condition.
- 4. Perform an operational (or performance) check.
- 5. Determine the isotope(s) correction factor to be applied to the detector.
- 6. Calculate the instrument's MDA.
- 7. Compare the instrument's MDA to the survey criteria.
- **8.** If the instrument or detector do not meet all of the above criteria, then replace the instrument or detector (or change/charge the batteries) or change your survey technique so that the instrument's MDA will meet the survey criteria.
- **9.** Perform and document the survey.

INSTRUMENT SELECTION

Exposure/Absorbed Dose Rates (photon)

Ion Chamber, Energy Compensated GM (above 40 keV), Tissue-Equivalent Plastic

Dose Equivalent Rates (neutron)

Boron Trifluoride Counter with polyethylene moderator, Neutron-Proton Recoil (Rossi Detector, Liquid Plastic Scintillator, Plastic/ZnS Scintillator), LiGdBO₃-loaded Plastic

Beta/gamma activity

Proportional Counter, GM, Plastic Scintillator

Alpha activity

Proportional Counter, ZnS Scintillator, Air Proportional, Solid-state Silicon, Plastic Scintillator

Alpha + beta activity

Proportional Counter, Plastic/ZnS Scintillator, Plastic Scintillator, Solid-state Silicon

Gross gamma activity	Nal, Csl
X-ray spectroscopy	Si(Li)
Gamma spectroscopy	HPGe, CZT, Hgl, Csl
Alpha spectroscopy	Frisch Grid, Solid-state Silicon
Beta spectroscopy	BGO, Plastic Scintillator, Solid state Silicon

DOT 49CFR173

Non-exclusive use (on package)

200 contact and 10 mrem / hr @ 1 m

Exclusive use (open transport)

200 contact and 10 mrem / hr @ 2 m from sides of vehicle, 2 mrem / hr in cab

Exclusive use (closed transport)

1,000 contact, 200 @ vehicle sides, & 10 mrem / hr @ 2 m, 2 mrem / hr in cab

Label	Surface Radiation Level	ті
White I	<u><</u> 0.5 mrem / hr	0
Yellow II	0.5 < RL <u><</u> 50 mrem / hr	<u><</u> 1.0
Yellow III	> 50 mrem / hr	> 1.0
Nata, Daakaraa ara aya	ant from an addition to belie a if objessed F	

Note: Packages are exempt from specification labeling if shipped Exclusive-Use LSA, or contain Limited Quantities of radioactive materials.

Removable External Radioactive Contamination - Wipe Limits

	Max Permis	ssible Limits
Contaminant	µCi/cm ²	dpm/cm ²
Beta/gamma emitting radionuclides; all radionuclides with		
half-lives less than 10 days; natural uranium; natural thorium;	10 ⁻⁵	22
U^{235} ; U^{238} ; Th ²²⁸ ; Th ²³⁰ and Th ²³² when contained in ores or		
physical concentrates		

All other alpha-emitting radionuclides	10 ⁻⁶	2.2
--	------------------	-----

	Instruments and A	Materials	
	Instrument & Article Limits	Package Limits	Package Limits
Solids			
Special form	$10^{-2} A_1$	A ₁	10 ⁻³ A ₁
Other forms	$10^{-2} A_2$	A ₂	10 ⁻³ A ₂
Liquids			
Tritiated water	r		
< 0.1 Ci/L	-	-	1,000 curies
0.1 to 1.0 Ci/L	. –	-	100 curies
> 1.0 Ci/L	-	-	1 curie
Other liquids	10 ⁻³ A ₂	10 ⁻¹ A ₂	10 ⁻⁴ A ₂
Gases			
Tritium*	20 curies	200 curies	20 curies
Special form	$10^{-3} A_1$	10 ⁻² A ₁	10 ⁻³ A ₁
Other forms	10 ⁻³ A ₂	10 ⁻² A ₂	10 ⁻³ A ₂
Other forms	10 ⁻³ A ₂	10 ⁻² A ₂	10 ⁻³ A ₂

Activity Limits for Limited Quantities, Instruments & Articles

* These tritium values also apply to tritium in activated luminous paint and tritium absorbed on solid carriers.

Examples of A₁ and A₂ Values

	A ₁ Ci	A ₂ Ci		A ₁ Ci	A ₂ Ci
C ¹⁴	1,000	60	Cs ¹³⁷	30	10
Mo ⁹⁹	100	20	U^{235}	100	0.2
Ra ²²⁶	10	0.05	Pu ²³⁹	2	0.002
S ³⁵	1,000	60	Co ⁶⁰	7	7
Sr ⁹⁰	10	0.4	Am ²⁴¹	8	0.008
lr ¹⁹²	20	10			

 A_1 means the maximum amount of *special form* (encapsulated or massive solid metal) material allowed in a *Type A package*, such that its escape from the packaging would cause only a direct radiation hazard. A_2 means the maximum amount of *normal form* or *non-special* form material allowed in a *Type A package*, such that its escape from the packaging would present both a radiation and a contamination hazard. Quantities exceeding A_1 or A_2 values require *Type B packaging*.

SPECIFIC ACTIVITY (Ci / g)

				(0/		
Specific Aciti	vity =	3.578 E	5 / (T _{1/2} x ato	omic mass) if T	$_{1/2}$ is in years	
multiply the a	bove by	365	8760	5.25 E5	3.15 E7	
if $T_{1/2}$ is in		days	hours	minutes	seconds	
	Half-Life	Ci/g			Half-Life	Ci/g
H ³	12.3 y	9.70 E3		Ni ⁵⁹	7.60E4 y	0.0798
Be ⁷	53.28 d	3.50 E5		Fe ⁵⁹	44.51 d	4.97 E4
C ¹⁴	5730 y	4.46		Co ⁶⁰	5.271 y	1.13 E3
O ¹⁵	122.2 s	6.15 E9		Cu ⁶²	9.74 m	3.11 E8
N ¹⁶	7.13 s	9.88 E10		Ni ⁶⁵	2.52 h	1.91 E7
F ¹⁸	1.830 h	9.52 E7		Zn ⁶⁵	243.8 d	8.24 E3
Na ²²	2.605 y	6.24 E3		Ge ⁶⁸	270.8 d	7.09 E3
Na ²⁴	14.96 h	8.73 E6		As ⁷⁴	127.8 d	1.38 E4
Al ²⁶	7.3 E5 y	1.89 E-2		Se ⁷⁵	119.78 d	1.45 E4
P ³²	14.28 d	2.86 E5		Kr ⁸⁵	10.73 y	392
Cl ³⁶	3.01 E5 y	3.30 E-2		Rb ⁸⁸	17.7 m	1.21 E8
K^{40}	1.28 E9 y	6.99 E-6		Rb ⁸⁹	15.4 m	1.37 E8
Ar ⁴¹	1.82 h	4.20 E7		Sr ⁸⁹	50.52 d	2.90 E4
K^{42}	12.36 h	6.04 E6		Sr ⁹⁰	29.1 y	137
K^{43}	22.3 h	3.27 E6		Y^{90}	64.1 h	5.43 E5
Sc ⁴⁶	83.81 d	3.39 E4		Zr ⁹⁵	64.02 d	2.15 E4
Sc ⁴⁷	3.349 d	8.30 E5		Nb ⁹⁵	35.06 d	3.92 E4
Sc ⁴⁸	43.7 h	1.49 E6		Tc ⁹⁹	2.13 E5 y	1.70 E-2
V ⁴⁸	15.98 d	1.70 E5		Mo ⁹⁹	67 h	4.80 E5
Cr ⁵¹	27.70 d	9.24 E4		Tc ^{99m}	6.01 h	5.27 E6
Mn ⁵²	5.591 d	4.49 E5		Ru ¹⁰⁶	1.02 y	3.31 E3
Mn ⁵⁴	312.2 d	7.75 E3		1 ¹²⁵	60.1 d	1.74 E4
Fe ⁵⁵	2.73 y	2.38 E3		l ¹²⁶	12.93 d	7.97 E4
Mn ⁵⁶	2.578 h	2.17 E7		l ¹²⁹	1.57 E7 y	1.77 E-4
C0 ⁵⁶	77.3 d	3.02 E4		I ¹³¹	8.040 d	1.24 E5
Co ⁵⁷	271.8 d	8.43 E3		1 ¹³³	20.8 h	1.13 E6
Ni ⁵⁷	35.6 h	1.54 E6		l ¹³⁴	52.6 m	2.67 E7
Co ⁵⁸	70.88 d	3.18 E4		1 ¹³⁵	6.57 h	3.53 E6

Page 63

SPECIFIC ACTIVITY (Ci / g)

	Half-Life	Ci/g			Half-Life	Ci/g
Cs ¹³⁷	30.17 y	86.6	т	⁻ h ²²⁸	1.913 y	820
Ba ^{137m}	2.552 m	5.37 E8	Т	⁻ h ²²⁹	7300 y	0.214
Ba ¹⁴⁰	12.75 d	7.32 E4	Т	⁻ h ²³⁰	7.54 E4 y	2.06 E-2
La ¹⁴⁰	1.678 d	5.56 E5	U	J ²³⁰	20.8 d	2.73 E4
Gd ¹⁴⁸	75 y	32.2	Р	²³¹	3.28 E4 y	4.72 E-2
Ir ¹⁹²	73.83 d	9.21 E3	Т	⁻ h ²³²	1.40 E10 y	1.10 E-7
TI ²⁰⁴	3.78 y	464	U	J ²³²	70 y	22.0
TI ²⁰⁶	4.20 m	2.17 E8	U	J ²³³	1.592E5 y	9.65 E-3
TI ²⁰⁸	3.053 m	2.96 E8	U	J ²³⁴	2.46 E5 y	6.22 E3
Pb ²¹⁰	22.3y	76.4	Р	Pa ^{234m}	1.17 m	6.86 E8
Po ²¹⁰	138.38 d	4.49 E3	Р	Pa ²³⁴	6.69 h	2.00 E6
Bi ²¹⁰	5.01 d	1.24 E5	Т	⁻ h ²³⁴	24.10 d	2.32E4
TI ²¹⁰	1.30 m	6.88 E8	U	J ²³⁵	7.04 E8 y	2.16 E-6
Po ²¹²	298 ns	1.78 E17	Р	²³⁶	2.87 y	528
Bi ²¹²	60.6 m	1.47 E7	N	Np ²³⁷	2.14 E 6 y	7.05 E-4
Pb ²¹²	10.64 h	1.39 E6	U	J ²³⁸	4.47 E9 y	3.36 E-7
Po ²¹⁴	163.7 us	3.22 E14	Р	²³⁸	87.7 y	17.1
Bi ²¹⁴	19.9 m	4.41 E7	Р	²³⁹	2.410 E4 y	6.21 E-2
Pb ²¹⁴	27 m	3.25 E7	N	√p ²³⁹	2.355 d	2.32 E5
Po ²¹⁶	145 ms	3.60 E11	Р	²⁴⁰	6560 y	0.227
At ²¹⁸	1.6 s	3.23 E10	Р	²⁴¹	14.4 y	103
Po ²¹⁸	3.10 m	2.78 E8	A	m ²⁴¹	432.7 y	3.43
Rn ²²⁰	55.6 s	9.21 E8	Р	Pu ²⁴²	3.75E5 y	3.94 E-3
Rn ²²²	3.8235 d	1.54 E5	С	Cm ²⁴²	162.8 d	3.31 E3
Ra ²²³	11.435 d	5.12 E4	A	m ²⁴³	7370 y	0.200
Ra ²²⁴	3.66 d	1.59 E5	С	Cm ²⁴⁴	18.1 y	81.0
Ra ²²⁵	14.9 d	3.90 E4	С	Cf ²⁴⁹	351 y	4.09
Ra ²²⁶	1600 y	0.989	В	3k ²⁴⁹	320 d	1.64 E3
Ac ²²⁷	21.77 у	72.4	С	Cf ²⁵²	2.638 y	538
Th ²²⁷	18.72 d	3.07 E4	E	s ²⁵³	20.47 d	2.52 E4
Ac ²²⁸	6.15 h	2.24 E6				
Ra ²²⁸	5.76 y	2.72 E2	Page 64			

These tables show the first progeny with the type of radiation, its energy in keV, and the % abundance of that energy. Only the most abundant energies are listed if the decay has more than three energy levels unless the additional energy levels are typically used in identifying the radionuclide. The energies are rounded to the nearest keV.

H^{3} Be^{7} C^{14} O^{15} N^{16} F^{18} Na^{22}	1 st Daughter He ³ Li ⁷ N ¹⁴ N ¹⁵ O ¹⁶ O ¹⁸ Ne ²²	Radiation β^{-} EC γ β^{+} β^{+} γ^{+} β^{+} γ^{+} No x-rays	keV 18.6 478 157 1732 3302 6129 634 546 1275 1	(% abundance) (100) (10.42) (100) (99.9) (4.9), 4288 (68), 10418 (26); (69), 7115 (5) (96.73) (89.84); (99.94); (0.12)
Na ²⁴	Mg ²⁴	Ne x-rays β ⁻	1390	(99.935);
		γ	1369	(99.9991), 2754 (99.862)
AI^{26}	Mg ²⁶	β ⁺	1174	(81.81);
		γ	130	(2.5), 1809 (99.96), 2938 (0.24);
- 32	• ³²	Mg x-rays	1	(0.44)
P^{32}	S ³²	β	1710	(100)
Cl ³⁶ K ⁴⁰	Ar^{36}	β ⁻	710	(99.0)
K	Ca ⁴⁰ Ar ⁴⁰	β	1312	(89.33)
	Ar	ΕС γ	1461	(10.67);
Ar ⁴¹	K^{41}	Ar x-rays	3 1198	(0.94)
AI	ĸ	β ⁻	1294	(99.17), 2492 (0.78);
K^{42}	Ca ⁴²	γ β ⁻	1684	(99.16) (0.319), 1996 (17.5), 3521 (82.1);
IX.	Ca		313	(0.319), 1525 (17.9)
K^{43}	Ca ⁴³	γ β ⁻	422	(2.24), 827 (92.2), 1224 (3.6);
IX I	θa	γ	373	(87.3), 397 (11.43), 593 (11.0), 617 (80.5)
Sc ⁴⁶	Ti ⁴⁶	β	357	(99.996);
00		γ	889	(99.983), 1121 (99.987)
	IT	Ŷ	143	(62.7);
		, Sc x-rays	0.4	(0.11), 4 (6.26)
Sc ⁴⁷	Ti ⁴⁷	β	441	(68), 601 (32);
		γ	159	(68)
Sc ⁴⁸	Ti ⁴⁸	β	482	(10.01), 657 (89.99);
		γ	984	(100), 1037 (97.5), 1312 (100)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V ⁴⁸	1 st Daughter Ti ⁴⁸	Radiation β⁺	keV 697	(% abundance) (50.1);
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	v		•		
$ \begin{array}{ccc} Cr^{51} & \sqrt{5^{51}} & EC & \gamma & 320 & (9.83); \\ & Vx.rays & 1 & (0.33), 5 (22.31) \\ & Mn^{52} & Cr^{54} & \Pi & \gamma & 378 & (1.68); \\ & EC + \beta^{*} & 905 & (0.164), 2633 (96.4); \\ & \gamma & 1434 & (98.2), 1727 (0.216); \\ & Cr x-rays & 5 & (0.37) \\ & \beta^{*} & 575 & (29.4); \\ & \gamma & 744 & (90.0), 848 (3.32), 836 (94.5), 1246 (4.21), \\ & 1434 (5.07); \\ & Cr x-rays & 1 & (0.26), 5 (15.5), 6 (2.06) \\ & EC & \gamma & 835 & (99.975); \\ & Cr x-rays & 1 & (0.26), 5 (15.5), 6 (2.06) \\ & EC & \gamma & 835 & (99.975); \\ & Fe^{55} & Mn^{55} & EC Mn x-rays & 1 & (0.42), 6 (24.5), 6 (2.94) \\ & Fe^{56} & \beta^{*} & 228 & (14.6), 1038 (27.8), 2849 (56.2); \\ & \gamma & 847 & (98.9), 1811 (27.2), 2113 (14.3) \\ & Co^{56} & Fe^{56} & \beta^{*} & 423 & (1.05), 1461 (18.7); \\ & \gamma & 847 & (99.958), 1038 (14.03), 1238 (67.0), 1771 (15.51), \\ & 2598 (16.9); \\ & Fe x-rays & 1 & (0.34), 6 (21.83), 7 (2.92) \\ & Co^{57} & Fe^{57} & EC & \gamma & 14 & (9.54), 122 (85.51), 136 (10.6); \\ & Fe x-rays & 1 & (0.34), 6 (21.83), 7 (2.92) \\ & Co^{57} & Fe^{57} & EC & \gamma & 14 & (9.54), 123 (14.03) \\ & Fe x-rays & 1 & (0.29), 7 (16.1), 8 (2.46) \\ & Co^{58} & Fe^{58} & \beta^{*} & 475 & (14.93); \\ & \gamma & 127 & (12.9), 1378 (77.9), 1919(14.7); \\ & Co x-rays & 1 & (0.29), 7 (18.1), 8 (2.46) \\ & Co^{58} & Fe^{58} & \beta^{*} & 475 & (14.93); \\ & \gamma & 811 & (99.4), 864 (0.74), 1675 (0.54); \\ & Fe x-rays & 1 & (0.29), 7 (18.1), 7 (3.1) \\ & Ne^{59} & Co^{59} & \beta^{*} & 131 & (1.37), 273 (45.2), 466 (53.1); \\ & \gamma & 192 & (3.11), 1099 (56.5), 1292 (43.2) \\ & Co^{60} & Ne^{60} & \beta^{*} & 318 & (100); \\ & V^{1173} & (100), 132 (100) \\ & V^{1173} & (100), 132 (100) \\ & V^{1173} & (100), 132 (100) \\ & V^{118} & Tays & 7 & (0.7) \\ & Zn^{65} & Cu^{65} & EC \beta^{*} & 330 & (1.415); \\ & Zn^{65} & Cu^{65} & EC \beta^{*} & 330 & (1.415); \\ & \end{array}$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cr ⁵¹	V ⁵¹			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mn ⁵²	Cr ⁵⁴		378	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			EC + β⁺	905	(0.164), 2633 (96.4);
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			γ	1434	(98.2), 1727 (0.216);
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			β^+		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			γ	744	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			•		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N A. 54	C ⁵⁴			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IVIN	Ur		835	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F م ⁵⁵	Mn ⁵⁵		1	
$\begin{array}{ccccc} Co^{56} & Fe^{56} & \beta^{+} & 423 & (1.05), 1461 (18.7); \\ \gamma & 847 & (99.958), 1038 (14.03), 1238 (67.0), 1771 (15.51), \\ & 2598 (16.9); \\ Fe x-rays & 1 & (0.34), 6 (21.83), 7 (2.92) \\ Co^{57} & Fe^{57} & EC \gamma & 14 & (9.54), 122 (85.51), 136 (10.6); \\ & Fe x-rays & 1 & (0.8), 6 (49.4), 7 (6.62) \\ Ni^{57} & Co^{57} & \beta^{+} & 463 & (0.87), 716 (5.7), 843 (33.1); \\ \gamma & 127 & (12.9), 1378 (77.9), 1919 (14.7); \\ & Co x-rays & 1 & (0.29), 7 (18.1), 8 (2.46) \\ Co^{58} & Fe^{58} & \beta^{+} & 475 & (14.93); \\ \gamma & 811 & (99.4), 864 (0.74), 1675 (0.54); \\ & Fe x-rays & 0.7 & (0.36), 6 (23.18), 7 (3.1) \\ Ni^{59} & Co^{59} & \beta^{-} & 131 & (1.37), 273 (45.2), 466 (53.1); \\ \gamma & 1173 & (100), 1332 (100) \\ Cu^{62} & Ni^{62} & \beta^{+} & 1754 & (0.132), 2927 (97.59); \\ \gamma & 876 & (0.148), 1173 (0.336); \\ & Ni x-rays & 7 & (0.7) \\ Zn^{65} & Cu^{65} & EC \beta^{+} & 330 & (1.415); \\ \end{array}$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		10			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co^{56}	Fe ⁵⁶			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00	10			
$\begin{array}{ccccc} Co^{57} & Fe^{57} & Fe^{58} & Fe^{59} & Fe^{5$			•		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Fe x-rays	1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C0 ⁵⁷	Fe ⁵⁷		14	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1	(0.8), 6 (49.4), 7 (6.62)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ni ⁵⁷	Co ⁵⁷	β^+		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			γ	127	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 58	- 58			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cos	Fe ³⁸			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NI:59	C ~ ⁵⁹	•		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	00			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Co^{60}	Ni ⁶⁰			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu ⁶²	Ni ⁶²	γ β+		
Ni x-rays 7 (0.7) Zn ⁶⁵ Cu ⁶⁵ EC β^+ 330 (1.415);	ou				
Zn^{65} Cu^{65} EC β^+ 330 (1.415);					
	Zn ⁶⁵	Cu ⁶⁵			
γ 1116 (50.75);			-	1116	(50.75);
Cu x-rays 1 (0.57), 8 (34.1), 9 (4.61)					

Ge ⁶⁸	1 st Daughter Ga ⁶⁸	Radiation EC Ga x-rays	keV 1	(% abundance) (0.67), 9 (38.7), 10 (5.46)
As ⁷⁴	Se ⁷⁴	β^{-}	718	(15.5), 1353 (18.8);
		γ	634	(15.4)
	Ge ⁷⁴	EC + β⁺	945	(26.6), 1540 (3.0);
		γ	596	(59.9), 608 (0.55), 1204 (0.287);
		Ge x-rays	1	(0.26), 10 (15), 11 (2.22)
Se ⁷⁵	As ⁷⁵	ΕС γ	136	(59.2), 265 (59.8), 280 (25.2),
05	05	As x-rays	1	(0.9), 11 (47.5), 12 (7.3)
Kr ⁸⁵	Rb ⁸⁵	β ⁻	173	(0.437), 687 (99.563);
00		γ	514	(0.434)
Rb ⁸⁸	Sr ⁸⁸	β ⁻	2581	(13.3), 3479 (4.1), 5315 (78);
90	- 80	γ	898	(14), 1836 (21.4), 2678 (1.96)
Rb ⁸⁹	Sr ⁸⁹	β ⁻	1275	(33), 2223 (34), 4503 (25);
	00	γ	1031	(58), 1248 (42), 2196 (13.3)
Sr ⁸⁹	Y ⁸⁹	β ⁻	1491	(99.985);
	00	γ	av.909	
Sr ⁹⁰	Y ⁹⁰	β	546	(100)
Y ⁹⁰	Zr ⁹⁰	β ⁻	2284	(99.988)
Nb ⁹⁴	Mo ⁹⁴	β ⁻	471	(100);
05	05	γ	703	(100), 871 (100)
Zr ⁹⁵	Nb ⁹⁵	β ⁻	366	(55.4), 399 (43.7), 887 (0.78);
	22	γ	724	(43.7), 757 (55.3)
Tc ⁹⁹	Ru ⁹⁹	β ⁻	294	(99.998)
Mo ⁹⁹	Tc ⁹⁹	β ⁻	436	(17.3), 848 (1.36), 1214 (82.7);
		γ	181	(6.2), 740 (12.8), 778 (4.5);
00~~	— 00	Tc x-rays	2	(0.2), 18 (2.63), 21 (0.52)
Tc ^{99m}	Tc ⁹⁹	ΙΤγ	141	(89.07);
n 106	- , 106	Tc x-rays	2	(0.48), 18 (6.12), 21 (1.21)
Ru ¹⁰⁶	Rh^{106}	β ⁻	39	(100)
1 ¹²⁵	Te ¹²⁵	ΕС γ	35	(6.49);
I ¹²⁶	v 126	Te x-rays	4	(15), 27 (112.2), 31 (25.4)
1.20	Xe ¹²⁶	β ⁻	371	(3.1), 862 (27.2), 1251 (9);
		γ	389	(29.1), 491 (2.43), 880 (0.64);
	Te ¹²⁶	Xe x-rays	29	(0.115), 30 (0.213)
	ie	EC + β⁺	468	(0.244), 1134 (0.83);
		γ Το χ τογο	666	(40.2), 754 (5.1), 1420 (0.358);
		Te x-rays	4	(4.8), 27 (36.4), 31 (8.2)

I ¹²⁹	1 st Daughter Xe ¹²⁹	Radiation β ⁻ γ	keV 152 40	(% abundance) (100); (7.52);
I ¹³¹	Xe ¹³¹	Xe x-rays β ⁻ γ	4 247 284	(12), 29 (29.7), 30 (55), 34 (19.6) (2.12), 334 (7.36), 606 (89.3); (6.05), 364 (81.2), 637 (7.26);
1 ¹³³	Xe ¹³³	Xe x-rays β ⁻ γ	4 460 530	(0.55), 29 (1.35), 30 (2.5), 34 (0.89) (3.75), 520 (3.13), 880 (4.16), 1230 (83.5); (86.3), 875 (4.47), 1298 (2.33);
I ¹³⁴	Xe ¹³⁴	Xe x-rays β ⁻ γ	29 1280 847	(0.151), 30 (0.281) (32.5), 1560 (16.3), 1800 (11.2), 2420 (11.5); (95.41), 884 (65.3),1073 (15.3);
I ¹³⁵	Xe ¹³⁵	Xe x-rays β ⁻ γ	4 920 1132	(0.17), 29 (0.432), 30 (0.8), 34 (0.285) (8.7), 1030 (21.8), 1450 (23.6); (22.5), 1260 (28.6), 1678 (9.5);
Cs ¹³⁷ Ba ^{137m}	Ba ^{137m} Ba ¹³⁷	Xe x-rays β΄ IT γ Βο x rove	30 512 662 5	(0.127) (94.6), 1173 (5.4) (89.98); (1), 32 (5.89), 36 (1.39)
Ba ¹⁴⁰	La ¹⁴⁰	Ba x-rays β ⁻ γ	454 30	(26), 991 (37.4), 1005 (22); (14), 163 (6.7), 537 (25);
La ¹⁴⁰	Ce ¹⁴⁰	La x-rays β΄ γ	5 1239 329 5	(15), 33 (1.51), 38 (0.36) (11.11), 1348 (44.5), 1677 (20.7); (20.5), 487 (45.5), 816 (23.5); (0.25), 24 (0.472), 25 (0.87), 20 (0.87)
Gd ¹⁴⁸ Ir ¹⁹²	Sm ¹⁴⁴ Pt ¹⁹²	Ce x-rays a β ⁻ γ	5 3.180 256 296	(0.25), 34 (0.472), 35 (0.87), 39 (0.87) (100) (5.65), 536 (41.4), 672 (48.3); (29.02), 308 (29.68), 317 (82.85), 468 (48.1);
	Os ¹⁹²	Pt x-rays EC (4.69%); γ Os x-rays	9	(4.1), 65 (2.63), 67 (4.52), 76 (1.97) (3.29), 374 (0.73), 485 (3.16); (1.46), 61 (1.13), 63 (1.96), 71 (0.84)

TI ²⁰⁴	1 st Daughter Pb ²⁰⁴ Hg ²⁰⁴	Radiation β ⁻ EC (2.58);	keV 763	(% abundance) (97.42);
TI ²⁰⁶ TI ²⁰⁸	Pb ²⁰⁶ Pb ²⁰⁸	Hg x-rays β ⁻ β ⁻ γ	10 1520 1283 511	(0.76), 69 (0.425), 71 (0.723), 80 (0.318) (100) (23.2), 1517 (22.7), 1794 (49.3); (21.6), 583 (84.2), 860 (12.46);
Pb ²¹⁰	Bi ²¹⁰	Pb x-rays β ⁻ γ	11 17 47	(2.9), 73 (2.03), 75 (3.43), 85 (1.52) (80.2), 63 (19.8); (4.05);
Po ²¹⁰ Bi ²¹⁰ Tl ²¹⁰	Pb ²⁰⁶ Po ²¹⁰ Pb ²¹⁰	Bi x-rays α β ⁻ β	11 5305 1161 1320 298	(24.3) (99.9989) (99.9998) (25), 1870 (56), 2340 (19); (79), 800 (99), 1310 (21);
Po ²¹² Bi ²¹²	Pb ²⁰⁸ Tl ²⁰⁸	Pb x-rays α β ⁻ γ	11 8785 5767 625 727	 (13), 73 (2.5), 75 (4.3), 85 (1.9) (100) (0.6), 6050 (25.2), 6090 (9.6); (3.4), 1519 (8), 2246 (48.4); (11.8), 785 (1.97), 1621 (2.75);
Pb ²¹²	Bi ²¹²	Tl x-rays β΄ γ	10 158 115	(7.7) (5.22), 334 (85.1), 573 (9.9); (0.6), 239 (44.6), 300 (3.4);
Po ²¹⁴	Pb ²¹⁰	Bi x-rays α	11 7687	(15.5), 75 (10.7), 77 (18), 87 (8) (99.989), 6892 (0.01);
Bi ²¹⁴	Po ²¹⁴	γ β ⁻ γ	1505 609 11	(0.013) (17.7), 1540 (17.9), 3270 (17.2); (46.3), 1120 (15.1), 1764 (15.8); (0.52), 77 (0.26), 70 (0.6), 00 (0.27)
Pb ²¹⁴	Bi ²¹⁴	Po x-rays β ⁻ γ	672 242	(0.52), 77 (0.36), 79 (0.6), 90 (0.27) (48), 729 (42.5), 1024 (6.3); (7.49), 295 (19.2), 352 (37.2); (42.5), 75 (6.21), 77 (40.5), 87 (4.67)
Po ²¹⁶ At ²¹⁸ Po ²¹⁸	Pb ²¹² Bi ²¹⁴ Pb ²¹⁴	Bi x-rays α α α	11 6779 6650 6003	(13.5), 75 (6.21), 77 (10.5), 87 (4.67) (99.998) (6), 6700 (94) (99.978)

Rn ²²⁰	1 st Daughter Po ²¹⁶	Radiation α	keV 6288	
Rn ²²²	Po ²¹⁸	γ γ γ	av 550 5490 av 512	(99.92), 4986 (0.08);
Ra ²²³	Rn ²¹⁹	α γ	5606 154	(24.2), 5715 (52.5), 5745 (9.5); (5.58), 269 (13.6), 324 (3.88);
Ra ²²⁴	Rn ²²⁰	Rn x-rays α γ	12 5449 241	(25), 81 (14.9), 84 (24.7), 95 (11.2) (4.9), 5686 (95.1); (3.95);
Ra ²²⁵	Ac ²²⁵	Rn x-rays β ⁻	12 322 40	(0.4), 81 (0.126), 84 (0.209)
Ra ²²⁶	Rn ²²²	γ Ac x-rays α	13 4602	(15.8) (5.6), 4785 (94.4);
Ac ²²⁷	Th ²²⁷	γ Rn x-rays β ⁻	186 12 19	(3.28); (0.8), 81 (0.18), 84 (0.299), 95 (0.136) (10), 34 (35), 44 (54);
		α γ Th x-rays	4938 av 17 13	
Th ²²⁷	Ra ²²³	αγ	5757 50	(8.4), 236 (11.5), 256 (6.3);
Ac ²²⁸	Th ²²⁸	Ra x-rays β ⁻ γ	12 606 338	(42), 85 (1.41), 88 (2.32), 100 (1.06) (8), 1168 (32), 1741 (12); (11.4), 911 (27.7), 969 (16.6);
	Ac ²²⁸ Ra ²²⁴	Th x-rays β ⁻	13 39 5212	(39), 90 (2.1), 93 (3.5), 105 (1.6) (100)
		α γ Ra x-rays	84 12	(0.4), 5341 (26.7), 5423 (72.7); (1.2), 132 (0.12), 216 (0.24); (9.6)
Th ²²⁹	Ra ²²⁵	α γ Ra x-rays	4815 31 12	 (9.3), 4845 (56.2), 4901 (10.2); (4), 194 (4.6), 211 (3.3); (81), 85 (16.5), 88 (27.1), 100 (12.4)
Th ²³⁰	Ra ²²⁶	α γ	4476 68	(0.12), 4621 (23.4), 4688 (76.3); (0.4), 168 (0.07);
U^{230}	Th ²²⁶	Ra x-rays α γ	12 5667 72	(8.4) (0.4), 5818 (32), 5889 (67.4); (0.6), 154 (0.13), 230 (0.12);
Pa ²³¹	Ac ²²⁷	Th x-rays α γ Ac x-rays	13 4950 27 13	(12.2)

Th ²³²	1 st Daughter Ra ²²⁸	Radiation α γ	keV 3830 59	(% abundance) (0.2), 3953 (23), 4010 (77); (0.19), 125 (0.04);
U ²³²	Th ²²⁸	Ra x-rays α Υ	12 5139 58	(8.4) (0.3), 5264 (31.2), 5320 (68.6), (0.2), 129 (0.082), 270 (0.0038), 328 (0.0034);
U ²³³	Th ²²⁹	Th x-rays α <u>Υ</u>	13 4729 115	(12) (1.6), 4784 (13.2), 4824 (84.4); (0.18);
U ²³⁴	Th ²³⁰	Th x-rays α γ	13 4605 53	(3.9) (0.2), 4724 (27.4), 4776 (72.4); (0.118), 121 (0.04);
Pa ²³⁴	U ²³⁴	Th x-rays β ⁻ γ	13 484 131	(10.5) (35), 654 (16), 1183 (10); (20.4), 882 (24), 946 (12);
Pa ^{234m}	U ²³⁴	U x-rays β ⁻ γ	14 1236 766	(114), 95 (15.7), 98 (25.4), 111(11.8) (0.7), 1471 (0.6), 2281 (98.6); (0.2), 1001 (0.6);
Th ²³⁴	Pa ²³⁴	U x-rays β ⁻ γ	14 76 63	(0.44), 95 (0.115), 98 (0.187) (2), 96 (25.3), 189 (72.5); (3.8), 92 (2.7), 93 (2.7);
U ²³⁵	Th ²³¹	Pa x-rays α γ	13 4364 144	(9.6) (11), 4370 (6), 4396 (55); (10.5), 163 (4.7), 186 (54);
Pu ²³⁶	U ²³²	Th x-rays α γ	13 5614 av 61	(31), 90 (2.7), 93 (4.5), 105 (2.1) (0.2), 5722 (31.8), 5770 (68.1); (0.08);
Np ²³⁷	Pa ²³³	U x-rays α γ	14 4766 29	(13) (8), 4771 (25), 4788 (47); (14), 87 (12.6), 95 (0.8);
U ²³⁸	Th ²³⁴	Pa x-rays α γ	13 4039 av 66	(59), 92 (1.58), 96 (2.6), 108 (1.6) (0.2), 4147 (23.4), 4196 (77.4); (0.1);
Pu ²³⁸	U ²³⁴	Th x-rays α γ U x-rays	13 5358 44 14	(8.8) (0.1), 5456 (28.3), 5499 (71.6); (0.039), 100 (0.0075), 153 (0.0013); (11.6)

CHARACTERISTIC RADIATIONS OF COMMONLY ENCOUNTERED RADIONUCLIDES

Pu ²³⁹	1 st Daughter U ²³⁵	Radiation α γ	keV 5105 52	(% abundance) (11.5), 5143 (15.1), 5155 (73.3); (0.02), 129 (0.0062), 375 (0.0015), 414 (0.0015);
Np ²³⁹	Pu ²³⁹	Ü x-rays β ⁻ γ	14 330 106	(4.4) (35.7), 391 (7.1), 436 (52); (22.7), 228 (10.7), 278 (14.1);
Pu ²⁴⁰	U^{236}	Pu x-rays α γ	14 5123 av 54	(62), 100 (14.7), 104 (23.7), 117 (11.1) (26.4), 5168 (73.5); (0.05);
Pu ²⁴¹	Am ²⁴¹	U x-rays β ⁻ α	14 21 4900	(11) (99.99755); (0.00245)
Am ²⁴¹	Np ²³⁷	α γ	5388 26	(1.4), 5443 (12.8), 5486 (85.2); (2.4), 33 (0.1), 60 (35.9);
Pu ²⁴²	U ²³⁸	Np x-rays α U x-rays	14 4856 14	(43) (22.4), 4901 (78); (9.1)
Cm ²⁴²	Pu ²³⁸	α γ	6070 av 59	(25.9), 6113 (74.1); (0.04);
Am ²⁴³	Np ²³⁹	Pu x-rays α γ	14 5181 43	(11.5) (1), 5234 (10.6), 5275 (87.9); (5.5), 75 (66), 118 (0.55);
Cm ²⁴⁴	Pu ²⁴⁰	ν Np x-rays α γ	14 5763 av 57	(39) (23.6), 5805 (76.4); (0.03);
Cf ²⁴⁹	Cm ²⁴⁵	Pu x-rays α γ	14 5760 253	(10.3) (3.66), 5814 (84.4), 5946 (4); (2.7), 333 (15.5), 388 (66);
Bk ²⁴⁹ Cf ²⁵²	Cf ²⁴⁹ Cm ²⁴⁸	Cm x-rays β΄ α γ	15 126 5977 av 68	(30), 105 (2.19), 109 (3.5), 123 (1.66) (100) (0.2), 6076 (15.2), 6118 (81.6); (0.03); (7.2);
Es ²⁵³	Bk ²⁴⁹	Cm x-rays spontaneous f α γ Bk x-rays	6540	(7.3); (3) (0.9), 6592 (6.6), 6633 (89.8); (0.14); (4.6)

See the note at the beginning of these tables.

			R/hr per Ci	R/hr per gram
Isotope	Ci/gram	gram/Ci	at 30 cm	at 30 cm
H^3	9.70E+3	1.03E-4	N/A	N/A
Be ⁷	3.50E+5	2.86E-6	0.38	1.33E+5
C ¹⁴	4.46	0.224	N/A	N/A
O ¹⁵	6.15E+9	1.63E-10	7.98	4.91E+10
N ¹⁶	9.88E+10	1.01E-11	16.35	1.62E+12
F ¹⁸	9.52E+7	1.05E-8	7.72	7.35E+8
Na ²²	6.24E+3	1.60E-4	14.85	9.27E+4
Na ²⁴	8.73E+6	1.15E-7	20.55	1.79E+8
Al ²⁶	1.89E-2	53	16.6	0.313
P ³²	2.86E+5	3.50E-6	N/A	N/A
Cl ³⁶	3.30E-2	30.3	N/A	N/A
K^{40}	6.99E-6	1.43E+5	0.91	6.36E-6
Ar ⁴¹	4.20E+7	2.38E-8	7.73	3.25E+8
K ⁴²	6.04E+6	1.66E-7	1.4	8.45E+6
K^{43}	3.27E+6	3.06E-7	5.6	1.83E+7
Sc ⁴⁶	3.39E+4	2.95E-5	10.9	3.69E+5
Sc ⁴⁷	8.30E+5	1.21E-6	0.56	4.65E+5
Sc ⁴⁸	1.49E+6	6.69E-7	21	3.14E+7
V ⁴⁸	1.70E+5	5.87E-6	15.6	2.66E+6
Cr ⁵¹	9.24E+4	1.08E-5	0.16	1.48E+4
Mn ⁵²	4.49E+5	2.23E-6	18.6	8.36E+6
Mn ⁵⁴	7.75E+3	1.29E-4	5.67	4.39E+4
Fe ⁵⁵	2.38E+3	4.20E-4	N/A	N/A
Mn ⁵⁶	2.17E+7	4.61E-8	10.24	2.22E+8
	3.02E+4	3.31E-5	21.36	6.44E+5
Co ⁵⁷	8.43E+3	1.19E-4	1.68	1.42E+4
Ni ⁵⁷	1.54E+6	6.47E-7	12	1.85E+7
C0 ⁵⁸	3.18E+4	3.15E-5	6.81	2.16E+5
Ni ⁵⁹	7.98E-2	12.5	N/A	N/A

	30 cm
Fe ⁵⁹ 4.97E+4 2.01E-5 7.34 3.6	65E+5
Co ⁶⁰ 1.13E+3 8.84E-4 15.19 1.7	'2E+4
Cu ⁶² 3.11E+8 3.21E-9 7.85 2.4	4E+9
Zn ⁶⁵ 8.24E+3 1.21E-4 3.66 3.0)2E+4
	'5E+3
	89E+5
Kr ⁸⁵ 392 2.55E-3 0.02 7.8	5
	82E+8
Rb ⁸⁹ 1.37E+8 7.3E-9 2.17 1.6	67E+9
Sr ⁸⁹ 2.90E+4 3.44E-5 9.00E-4 26.	.1
Sr ⁹⁰ 137 7.32E-3 N/A N/A	4
Y ⁹⁰ 5.43E+5 1.84E-6 N/A N/A	4
Nb ⁹⁴ 0.19 5.25 10.89 2.0)7
	1E+5
Tc ⁹⁹ 0.017 58.8 N/A N/A	4
Mo ⁹⁹ 4.80E+5 2.08E-6 1.25 6.0	0E+5
Tc ^{99m} 5.27E+6 1.90E-7 1.36 7.1	6E+6
Ru ¹⁰⁶ 3.31E+3 3.02E-4 N/A N/A	4
l ¹²⁵ 1.74E+4 5.75E-5 3.055 5.3	81E+4
I_{126}^{126} 7.97E+4 1.25E-5 4.34 3.4	6E+5
I_{129}^{129} 1.77E-4 5.66E+3 1.4 2.4	7E-4
	89E+5
	4E+6
l ¹³⁴ 2.67E+7 3.75E-8 17.47 4.6	6E+8
I^{135} 3.53E+6 2.83E-7 9.57 3.3	88E+7
Cs ¹³⁷ 86.6 0.0116 N/A N/A	
Ba ^{137m} 5.37E+8 1.86E-9 4.44 2.3	39E+9
110	32E+5
La ¹⁴⁰ 5.56E+5 1.80E-6 12.42 6.9	0E+6
Gd ¹⁴⁸ 32.2 0.031 N/A N/A	4

			R/hr per Ci	R/hr per gram
Isotope	Ci/gram	gram/Ci	at 30 cm	at 30 cm
lr ¹⁹²	9.21E+3	1.09E-4	6.56	6.04E+4
TI ²⁰⁴	464	2.16E-3	0.0124	5.75
TI ²⁰⁶	2.17E+8	4.61E-9	N/A	N/A
TI ²⁰⁸	2.96E+8	3.38E-9	18.89	5.59E+9
Pb ²¹⁰	76.4	0.0131	2.79	213
Po ²¹⁰	4.49E+3	2.23E-4	5.84E-5	0.262
Bi ²¹⁰	1.24E+5	8.06E-6	N/A	N/A
TI ²¹⁰	6.88E+8	1.45E-9	18.88	1.30E+10
P0 ²¹²	1.78E+17	5.61E-18	N/A	N/A
Bi ²¹²	1.47E+7	6.82E-8	2.16	3.16E+7
Pb ²¹²	1.39E+6	7.20E-7	3.03	4.21E+6
P0 ²¹⁴	3.22E+14	3.11E-15	5.74E-4	1.85E+11
Bi ²¹⁴	4.41E+7	2.27E-8	9.31	4.11E+8
Pb ²¹⁴	3.25E+7	3.08E-8	3.59	1.17E+8
Po ²¹⁶	3.60E+11	2.78E-12	9.95E-5	3.58E+7
At ²¹⁸	3.23E+10	3.09E-11	N/A	N/A
Po ²¹⁸	2.78E+8	3.60E-9	N/A	N/A
Rn ²²⁰	9.21E+8	1.09E-9	3.99E-3	3.68E+6
Rn ²²²	1.54E+5	6.50E-6	3.03E-3	466
Ra ²²³	5.12E+4	1.95E-5	3.61	1.85E+5
Ra ²²⁴	1.59E+5	6.28E-6	0.12	1.91E+4
Ra ²²⁵	3.90E+4	2.57E-5	1.71	6.66E+4
Ra ²²⁶	0.989	1.01	0.13	0.129
Ac_{007}^{227}	72.4	0.0138	0.1	7.24
Th ²²⁷	3.07E+4	3.25E-5	4.7	1.44E+5
Ac ²²⁸	2.24E+6	4.47E-7	9.36	2.09E+7
Ra ²²⁸	272	3.67E-3	5.1	1.39E+3
Th ²²⁸	820	1.22E-3	0.88	722
Th ²²⁹	0.213	4.67	8.16	1.75
Th ²³⁰	0.0206	48.5	0.76	0.0157

			R/hr per Ci	R/hr per gram
Isotope	Ci/gram	gram/Ci	at 30 cm	at 30 cm
U ²³⁰	2.73E+4	3.66E-5	1.01	2.76E+4
Pa ²³¹	0.0472	21.2	4.15	0.196
Th ²³²	1.10E-7	9.08E+6	0.76	8.37E-8
U^{232}	22.0	0.0454	0.99	21.8
U^{233}	9.65E-3	104	0.32	3.09E-3
U^{234}	6.22E-3	161	0.86	5.35E-3
Pa ²³⁴	6.86E+8	1.46E-9	21.98	1.51E+10
Pa ^{234m}	2.00E+6	4.99E-7	0.11	2.20E+5
Th ²³⁴	2.32E+4	4.32E-5	0.84	1.95E+4
U^{235}	2.16E-6	4.62E+5	3.76	8.13E-6
Pu ²³⁶	528	1.89E-3	0.99	523
Np ²³⁷	7.05E-4	1.42E+3	5.13	3.62E-3
U ²³⁸	3.36E-7	2.97E+6	0.72	2.42E-7
Pu ²³⁸	17.1	0.0583	0.87	14.9
Pu ²³⁹	0.0621	16.1	0.33	0.0205
Np ²³⁹	2.32E+5	4.31E-6	5.69	1.32E+6
Pu ²⁴⁰	0.227	4.40	0.83	0.189
Pu ²⁴¹	103	9.70E-3	N/A	N/A
Am ²⁴¹	3.43	0.291	0.17	0.58
Pu ²⁴²	3.94E-3	254	0.69	2.72E-3
Cm ²⁴²	3.31E+3	3.02E-4	0.8	2.65E+3
Am ²⁴³	0.200	5.01	1.13	0.235
Cm ²⁴⁴	81.0	0.0123	0.71	57.5
Cf ²⁴⁹	4.09	0.244	4.59	18.8
Bk ²⁴⁹	1.64E+3	6.10E-4	N/A	N/A
Cf ²⁵²	538	1.86E-3	0.46	248
Es ²⁵³	2.52E+4	3.97E-5	0.28	7.06E+3

These tables may also be expressed in units of mCi/mg, mg/Ci, mR/hr per mCi and mR/hr per mg simply by changing **all headings** to those values.

Gamma exposure in mR/hr at 30 cm vs Particle Size in microns for commonly encountered radionuclides

lsotope Be ⁷	1µ 1.3E-4	10µ 1.3E-1	100µ 1.3E2	1,000µ 1.3E5
Na ²²	4.7E-5	4.7E-2	4.7E1	1.3E5 4.7E4
Na ²⁴	9.5E-2	9.5E1	9.5E4	9.5E7
Al ²⁶	4.5E-10	4.5E-7	4.5E-4	4.5E-1
Mg ²⁸	4.8E-2	4.8E1	4.8E4	4.8E7
Sc ⁴⁰	6.9E-4	6.9E-1	6.9E2	6.9E5
V ⁴⁸	1E-2	1E1	1E4	1E7
Cr ⁵¹	9E-5	9E-2	9E1	9E4
Mn ⁵²	3.8E-2	3.8E1	3.8E4	3.8E7
Mn ⁵⁴	1.7E-4	1.7E-1	1.7E2	1.7E5
Mn ⁵⁶	8.3E-1	8.3E2	8.3E5	8.3E8
Co ⁵⁶	2.9E-3	2.9	2.9E3	2.9E6
Co ⁵⁷	6.6E-5	6.6E-2	6.6E1	6.6E4
Co ⁵⁸	1E-3	1	1E3	1E6
Fe ⁵⁹	1.5E-3	1.5	1.5E3	1.5E6
C0 ⁶⁰	8E-5	8E-2	8E1	8E4
Zn ⁶⁵	1.1E-4	1.1E-1	1.1E2	1.1E5
Se ⁷⁵	3.5E-4	3.5E-1	3.5E2	3.5E5

Gamma exposure in mR/hr at 30 cm vs Particle Size in microns for commonly encountered radionuclides

	1µ 6.3E-4 3.8E-4 3.2E-3 2.4E-5 3.6E-7 2.4E-4 1.1E-3 3.9E-4 7.1E-4 8E-3 3.5E-10 5.4E-11 8.1E-14 3.9E-11 1.6E-7 2.2E-10	10µ 6.3E-1 3.8E-1 3.2 2.4E-2 3.6E-4 2.4E-1 1.1 3.9E-1 7.1E-1 8 3.5E-7 5.4E-8 8.1E-11 3.9E-8 1.6E-4 2.2E-7	100µ 6.3E2 3.8E2 3.2E3 2.4E1 3.6E-1 2.4E2 1.1E3 3.9E2 7.1E2 8E3 3.5E-4 5.4E-5 8.1E-8 3.9E-5 1.6E-1 2.2E-4	1,000µ 6.3E5 3.8E5 3.2E6 2.4E4 3.6E2 2.4E5 1.1E6 3.9E5 7.1E5 8E6 3.5E-1 5.4E-2 8.1E-5 3.9E-2 1.6E2 2.2E-1
Am ²⁴¹	1.3E-7	1.3E-4	1.3E-1	1.3E2

0.03937 inches

	mCi/ALI 80 40 2 N/A N/A 50 0.4 4 0.4 0.6 2 0.3 N/A 5 5 0.9 2 0.8 0.6 40 0.7 2 9 5 0.4 4	mg/ALI 8.25E-3 1.14E-4 0.448 N/A N/A 5.25E-7 6.41E-5 4.58E-7 21.2 2.1E-6 60.6 4.29E+4 N/A 8.28E-7 1.84E-6 2.66E-5 2.41E-6 5.35E-7 3.52E-6 4.33E-4 1.56E-6 2.58E-4 3.78E-3 2.30E-7 1.33E-5 4.75E-4	DPM/ALI 1.78E+11 8.88E+10 4.44E+9 N/A N/A 1.11E+11 8.88E+8 8.88E+9 8.88E+9 8.88E+8 1.33E+9 4.44E+9 6.66E+8 N/A 1.11E+10 1.33E+10 2.00E+9 4.44E+9 1.78E+9 1.33E+9 8.88E+10 1.55E+9 4.44E+9 2.00E+10 1.11E+10 8.88E+8 8.88E+8 8.88E+9
C0 ⁵⁶		1.33E-5	
Ni ⁵⁷	4 2	4.75E-4 1.29E-6	0.00⊑+9 4.44E+9
Co ⁵⁸	1	3.15E-5	2.22E+9
Ni ⁵⁹	20	251	4.44E+10

Isotope	mCi/ALI	mg/ALI	DPM/ALI
Fe ⁵⁹	0.8	1.61E-5	1.78E+9
Co ⁶⁰	0.2	1.77E-4	4.44E+8
Cu ⁶²	1	3.21E-9	2.22E+9
Zn ⁶⁵	0.4	4.85E-5	8.88E+8
Ge ⁶⁸	5	7.05E-4	1.11E+10
Se ⁷⁵	0.5	3.44E-5	1.11E+9
Kr ⁸⁵	N/A	N/A	N/A
Rb ⁸⁸	20	1.66E-7	4.44E+10
Rb ⁸⁹	40	2.92E-7	8.88E+10
Sr ⁸⁹	0.5	1.72E-5	1.11E+9
Sr ⁹⁰	0.03	2.20E-4	6.66E+7
Y^{90}	0.4	7.36E-7	8.88E+8
Nb ⁹⁴	0.9	4.37	2.00E+9
Zr ⁹⁵	1	4.66E-5	2.22E+9
Tc ⁹⁹	4	236	8.88E+9
Mo ⁹⁹	1	2.08E-6	2.22E+9
Tc ^{99m}	80	1.52E-5	1.78E+11
Ru ¹⁰⁶	0.2	6.04E-5	4.44E+8
I ¹²⁵	0.04	2.30E-6	8.88E+7
126	0.02	2.51E-7	4.44E+7
129	5E-3	28.3	1.11E+7
131	0.03	2.42E-7	6.66E+7
l ¹³³	0.1	8.83E-8	2.22E+8
l ¹³⁴	20	7.50E-7	4.44E+10
I ¹³⁵	0.8	2.26E-7	1.78E+9
Cs ¹³⁷	0.1	1.16E-3	2.22E+8
Ba ^{137m}	N/A	N/A	N/A
Ba ¹⁴⁰	0.5	6.83E-6	1.11E+9
La ¹⁴⁰	0.6	1.08E-6	1.33E+9

Isotope Gd ¹⁴⁸ Ir ¹⁹² TI ²⁰⁴ TI ²⁰⁶ TI ²⁰⁸	mCi/ALI 0.01 0.9 2 *	mg/ALI 3.10E-4 9.77E-5 4.31E-3 *	DPM/ALI 2.22E+7 2.00E+9 4.44E+9 *
Pb ²¹⁰	6E-4	7.85E-6	1.33E+6
Po ²¹⁰	3E-3	6.68E-7	6.66E+6
Bi ²¹⁰	0.8	6.44E-6	1.78E+9
Tl ²¹⁰	*	*	*
Po ²¹²	*	*	*
Bi ²¹²	5	3.41E-7	1.11E+10
Pb ²¹²	0.08	5.76E-8	1.78E+10
Po ²¹⁴	*	*	*
Bi ²¹⁴	20	4.53E-7	4.44E+10
Pb ²¹⁴	9	2.77E-7	2.00E+10
Po ²¹⁶	*	*	*
At ²¹⁸	*	*	*
Po ²¹⁸	*	*	*
Rn ²²⁰	N/A	N/A	N/A
Rn ²²²	N/A	N/A	N/A
Ra ²²³	5E-3	9.76E-8	1.11E+7
Ra ²²⁴	8E-3	5.02E-8	1.78E+7
Ra ²²⁵	8E-3	2.05E-7	1.78E+7
Ra ²²⁶	2E-3	2.02E-3	4.44E+6
Ac ²²⁷	2E-4	2.76E-6	4.44E+5
Th ²²⁷	0.1	3.25E-6	2.22E+8
Ac ²²⁸	2	8.95E-7	4.44E+9
Ac ²²⁸	0.02	7.34E-5	4.44E+7
Th ²²⁸	6E-3	7.31E-6	1.33E+7

	mCi/ALI 6E-3 4E-3 2E-4 7E-4 2E-3 0.01 0.01 2 2 0.3 0.01 2E-3 5E-4 0.01 9E-4 8E-4 2 8E-4 2 8E-4 0.04 8E-4 8E-4 8E-4 0.03 8E-4	mg/ALI 0.028 0.194 1.47E-7 4.24E-3 6.35E+3 9.08E-5 1.04 1.61 2.91E-9 9.99E-7 1.30E-5 4.62E+3 3.79E-6 0.709 2.97E+4 5.25E-5 0.0129 8.62E-6 3.52E-3 3.88E-4 2.33E-4 0.203 9.05E-6 4.00E-3 4.00E-3	DPM/ALI 1.33E+7 8.88E+6 8.88E+6 4.44E+5 1.55E+6 4.44E+6 2.22E+7 2.22E+7 4.44E+9 6.66E+8 2.22E+7 4.44E+9 6.66E+8 2.22E+7 2.00E+6 1.78E+6 4.44E+9 1.78E+6 8.88E+7 1.78E+6 6.66E+7 1.78E+6 6.66E+7 1.78E+6
Cm ²⁴²			
Am ²⁴³			
Cm ²⁴⁴ Cf ²⁴⁹	1E-3	1.23E-5	2.22E+6
Bk ²⁴⁹	5E-4 0.2	1.22E-4 1.22E-4	1.11E+6 4.44E+8
Cf ²⁵²	2E-3	3.72E-6	4.44E+6
Es ²⁵³	0.2	7.93E-6	4.44E+8

Isotope	mCi/ALI	mg/ALI	DPM/ALI	DAC (µCi/ml)
H^3	80	8.25E-3	1.78E+11	2E-5
Be ⁷	20	5.71E-5	4.44E+10	8E-6
C ¹⁴	2	0.448	4.44E+9	1E-6
F ¹⁸	70	7.36E-7	1.55E+11	3E-5
Na ²²	0.6	9.61E-5	1.33E+9	3E-7
Na ²⁴	5	5.73E-7	1.11E+10	2E-6
Al ²⁶	0.06	3.18	1.33E+8	3E-8
P^{32}	0.4	1.40E-6	8.88E+8	2E-7
Cl ³⁶	0.2	6.1	4.44E+8	1E-7
K^{40}	0.4	5.72E+4	8.88E+8	2E-7
K ⁴²	5	8.28E-7	1.11E+10	2E-6
K^{43}	9	2.75E-6	2.00E+10	4E-6
Sc ⁴⁶	0.2	5.90E-6	4.44E+8	1E-7
Sc ⁴⁷	3	3.62E-6	6.66E+9	1E-6
Sc ⁴⁸	1	6.69E-7	2.22E+9	6E-7
V ⁴⁸	0.6	3.52E-6	1.33E+9	3E-7
Cr⁵¹	20	2.16E-4	4.44E+10	8E-6
Mn ⁵²	0.9	2.00E-6	2.00E+9	4E-7
Mn ⁵⁴	0.8	1.03E-4	1.78E+9	3E-7
Fe ⁵⁵	2	8.39E-4	4.44E+9	8E-7
Mn ⁵⁶	20	9.21E-7	4.44E+10	6E-6
C0 ⁵⁶	0.2	6.63E-6	4.44E+8	8E-8
C0 ⁵⁷	0.7	8.30E-5	1.55E+9	3E-7
Ni ⁵⁷	3	1.94E-6	6.66E+9	1E-6
Co ⁵⁸	0.7	2.20E-5	1.55E+9	3E-7
Ni ⁵⁹	2	25.1	4.44E+9	8E-7
Fe ⁵⁹	0.3	6.03E-6	6.66E+8	1E-7

lsotope Co ⁶⁰ Cu ⁶² Zn ⁶⁵	mCi/ALI 0.03 3 0.3	mg/ALI 2.65E-5 9.64E-9 3.64E-5	DPM/ALI 6.66E+7 6.66E+9 6.66E+8	DAC (μCi/ml) 1E-8 1E-6 1E-7
Ge	0.1	1.41E-5	2.22E+8	4E-8
Se ⁷⁵	0.6	4.13E-5	1.33E+9	3E-7
Rb ⁸⁸	60	4.98E-7	1.33E+11	3E-5
	100	7.30E-7	2.22E+11	6E-5
Sr ⁸⁹	0.1	3.44E-6	2.22E+8	6E-8
Sr ⁹⁰	0.02	1.46E-4	4.44E+7	2E-9
Y ⁹⁰	0.6	1.10E-6	1.33E+9	2E-7
Nb ⁹⁴	0.02	0.105	4.44E+7	6E-9
Zr ⁹⁵	0.1	4.66E-6	2.22E+8	6E-8
Tc ⁹⁹	0.7	41.3	1.55E+9	3E-7
Mo ⁹⁹	1	2.08E-6	2.22E+9	6E-7
Tc ^{99m}	200	3.80E-5	4.44E+11	6E-5
Ru ¹⁰⁶	0.01	3.02E-6	2.22E+7	5E-9
l ¹²⁵	0.06	3.45E-6	1.33E+8	3E-8
l ¹²⁶	0.04	5.02E-7	8.88E+7	1E-8
¹²⁹	9E-3	50.9	2.00E+7	4E-9
I ¹³¹	0.05	4.03E-7	1.11E+8	2E-8
1 ¹³³	0.3	2.65E-7	6.66E+8	1E-7
134	50	1.88E-6	1.11E+11	2E-5
135	2	5.66E-7	4.44E+9	7E-7
Cs ¹³⁷	0.2	2.31E-3	4.44E+8	7E-8
Ba ^{137m}	N/A	N/A	N/A	N/A
Ba ¹⁴⁰	1	1.37E-5	2.22E+9	6E-7

Isotope	mCi/ALI	mg/ALI	DPM/ALI	DAC (µCi/ml)
La ¹⁴⁰	1	1.80E-6	2.22E+9	5E-7
Gd ¹⁴⁸	8E-6	2.48E-7	1.78E+4	3E-12
lr ¹⁹²	0.2	2.71E-5	4.44E+8	9E-8
TI ²⁰⁴	2	4.31E-3	4.44E+9	9E-7
Pb ²¹⁰	2E-4	2.62E-6	4.44E+5	1E-10
Po ²¹⁰	6E-4	1.34E-7	1.33E+6	3E-10
Bi ²¹⁰	0.03	2.42E-7	6.66E+7	1E-8
Bi ²¹²	0.2	1.36E-8	4.44E+8	1E-7
Pb ²¹²	0.03	2.16E-8	6.66E+7	1E-8
Bi ²¹⁴	0.8	1.81E-8	1.78E+9	3E-7
Pb ²¹⁴	0.8	2.46E-8	1.78E+9	3E-7
Rn ²²⁰	0.02	2.17E-11	4.44E+7	8E-9
Rn ²²²	0.1	6.5E-7	2.22E+8	3E-8
Ra ²²³	7E-4	1.37E-8	1.55E+6	3E-10
Ra ²²⁴	2E-3	1.26E-8	4.44E+6	7E-10
Ra ²²⁵	7E-4	1.80E-8	1.55E+6	3E-10
Ra ²²⁶	6E-4	6.06E-4	1.33E+6	3E-10
Ac ²²⁷	4E-7	5.52E-9	888	2E-13
Th ²²⁷	3E-4	9.76E-9	6.66E+5	1E-10
Ac ²²⁸	9E-3	4.03E-9	2.00E+7	4E-9
Ra ²²⁸	0.001	3.67E-6	2.22E+6	5E-10
Th ²²⁸	1E-5	1.22E-8	2.22E+4	4E-12
Th ²²⁹	9E-7	4.20E-6	2.00E+3	4E-13
Th ²³⁰	6E-6	2.91E-4	1.33E+4	3E-12
U^{230}	3E-4	1.10E-8	6.66E+5	1E-10
Pa ²³¹	2E-6	4.24E-5	4.44E+3	7E-13
Th ²³²	1E-6	9.08	2.22E+3	5E-13

Isotope U^{232} U^{233} U^{234} Pa ²³⁴ Pa ²³⁴ Pa ²³⁴ Pa ²³⁴ Pa ²³⁵ Pu ²³⁶ Np ²³⁷ U ²³⁸ Pu ²³⁸ Pu ²³⁸ Pu ²³⁹ Pu ²⁴⁰ Pu ²⁴¹ Am ²⁴¹ Pu ²⁴² Cm ²⁴² Cm ²⁴² Am ²⁴³ Cm ²⁴⁴ Cf ²⁴⁹ Bk ²⁴⁹ Bk ²⁴⁹ Pu ²⁵²	mCi/ALI 8E-6 4E-5 4E-5 7 7 0.2 4E-5 2E-5 4E-6 4E-5 7E-6 6E-6 2 6E-6 3E-4 6E-6 3E-4 6E-6 3E-4 6E-6 1E-5 4E-6 1E-5	mg/ALI 3.63E-7 4.15E-3 6.44E-3 1.02E-8 3.50E-6 8.64E-6 18.5 3.79E-8 5.67E-3 119 4.08E-7 9.66E-5 8.62E-6 2.64E-5 2.91E-6 1.75E-6 1.75E-6 1.75E-8 3.00E-5 1.23E-7 9.77E-7 1.22E-6	DPM/ALI 1.78E+4 8.88E+4 1.55E+10 1.55E+10 4.44E+8 8.88E+4 4.44E+4 8.88E+3 8.88E+4 1.55E+4 1.33E+4 4.44E+9 1.33E+4 4.44E+9 1.33E+4 6.66E+5 1.33E+4 1.55E+4 6.66E+5 1.33E+4 2.22E+4 8.88E+3 4.44E+6	DAC (μ Ci/ml) 3E-12 2E-11 2E-11 3E-6 3E-6 3E-6 6E-8 2E-11 7E-12 2E-12 2E-12 2E-12 1E-6 2E-12 1E-6 2E-12 1E-10 2E-12 2E-12 1E-10 2E-12 4E-12 2E-12 4E-12 2E-12 9E-10
	2E-3 2E-5	1.22E-6 3.72E-8	4.44E+6 4.44E+4	9E-10 1E-11
ES	1E-3	3.97E-8	2.22E+6	6E-10

The values stated for Rn^{220} and Rn^{222} include their progeny; TI^{206} , TI^{208} , TI^{210} , Po^{212} , Po^{214} , Po^{216} , Po^{218} and At^{218}

Activity (in DPM) vs Particle Size (in microns) For oxide form of various isotopes

Isotope	0.1μ	0.3μ	0.5μ	1μ	3μ
	DPM	DPM	DPM	DPM	DPM
$\begin{array}{c} U^{234} \\ U^{235} \\ U^{238} \\ Np^{237} \\ Pu^{238} \\ Pu^{239} \\ Pu^{240} \\ Pu^{241} \\ Am^{241} \end{array}$	7.0E-5	1.88E-3	8.7E-3	0.07	1.9
	2.4E-8	6.5E-7	3.0E-6	2.4E-5	6.5E-4
	3.8E-9	1.0E-7	4.7E-7	3.8E-6	1.0E-4
	8.0E-5	2.2E-4	1.0E-3	8.0E-3	0.22
	0.2	5.4	25	201	5420
	7.3E-4	0.02	0.09	0.73	19.7
	2.7E-3	0.07	0.33	2.7	72
	1.2	32.7	151	1210	3.3E4
	0.04	1.1	5.1	41.1	1110
Isotope	5μ	10μ	30μ	50μ	100μ
	DPM	DPM	DPM	DPM	DPM
$\begin{array}{c} U^{234} \\ U^{235} \\ U^{238} \\ Np^{237} \\ Pu^{238} \\ Pu^{239} \\ Pu^{240} \\ Pu^{241} \\ Am^{241} \end{array}$	8.7	69.7	1900	8700	7.0E4
	3.0E-3	0.02	0.7	3.0	24.2
	4.7E-4	3.8E-3	0.1	0.47	3.8
	1.0	8.0	217	1000	8020
	2.5E4	2.0E5	5.4E6	2.5E7	2.0E8
	91	730	2.0E4	9.1E4	7.3E5
	333	2670	7.2E4	3.3E5	2.7E6
	1.5E5	1.2E6	3.3E7	1.5E8	1.2E9
	5140	4.1E4	1.1E6	5.14E6	4.1E7

Note: The measured activity will be less than calculated due to self-shielding.

Calculating Activity in DPM for the Oxide Form of Isotopes

- 1. Volume of the particle is $V = 1/6\pi d^3$.
- 2. Use the stated density of the isotope's dioxide form from a reference such as the Handbook of Chemistry and Physics.
- **3.** Mass of the particle is M = V x density.
- **4.** Activity of the particle is A = M x specific activity.
- 5. Correct the activity of the particle for the oxide; the molecular weight of Pu²³⁸ is 238, the activity of the dioxide form must be reduced by the ratio of the molecular weight of the dioxide form to the molecular weight of Pu²³⁸. Multiply the calculated activity by 238/270 to get the activity of the dioxide form.
- 6. Change the activity to dpm by multiplying the activity in curies by 2.22E12.

Example:		For a 10 μ diameter Pu ²³⁸ dioxide form particle							
I	DPM	=	V x M x A x ratio x 2.22E12						
Ň	V = M =		$1/6\pi d^3$ (d of 10 μ is 0.001 cm)	=	5.236E-10 cm ³				
I			V x density (11.46 g/cm ³)	=	6E-9 g/cm ³				
A =		=	M x specific activity (17.1 Ci/g)	=	1.03E-7 Ci				
/	A x rat	io =	1.03E-7 Ci x 238/270	=	9E-8 Ci				
I	DPM	=	9E-8 Ci x 2.22E12 dpm/Ci	=	200,777 DPM				

For particles larger than about 1μ the aerodynamic diameter is approximately equal to the physical diameter times the square root of the density. The 10μ diameter particle in our example would have an equivalent aerodynamic diameter of 34μ (10μ x the square root of 11.46). This must be taken into account in air sampling/monitoring situations.

EMERGENCY RESPONSE

Write in Your Emergency Phone Numbers

Supervisor:

Team Office:

Group Office:

Division Office:

Emergency Response Team:

Fire Department:

Hospital:

Guidelines for Control of Emergency Exposures

Use a dose limit of 5 rem for all emergency procedures Use a dose limit of 10 rem only for protecting major property Use a dose limit of 25 rem for lifesaving or protection of large populations Use a dose limit > 25 rem for lifesaving or protection of large populations only by volunteers and where the risks have been evaluated

RADIOLOGICAL EMERGENCY RESPONSE

SWIMS for Radiological Emergencies

Only under extreme radiological conditions such as external radiation greater than 100 rem / hr or airborne radioactivity concentrations greater than 100,000 DAC would the radiological emergency take precedence over serious personnel injuries. Therefore, you would not attempt to move a seriously injured person before medical personnel arrived unless the radiological conditions presented a greater danger to that person and yourself.

Stop or Secure operations in the area. If applicable, secure the operation causing the emergency.

Warn others in the area as you are evacuating. Do not search for potentially missing personnel at this stage of the emergency.

Isolate the source of the radiation or radioactivity if you understand the operation and are qualified to isolate the source.

Minimize individual exposure and contamination. Control the entry points to the area if possible.

Secure unfiltered ventilation. Evaluate the radiological conditions and advise facility personnel on ventilation control.

RADIOLOGICAL CONTROL PRIORITIES DURING MEDICAL EMERGENCIES

Immediate treatment by trained medical personnel should be sought for any serious injuries such as those involving profuse bleeding or broken bones. The order of priority should be to protect lives, protect property, and then to control the spread of contamination.

Identifying a Major Injury

Consider the following points in determining if the injury should be handled as a major injury.

Any head injury (from base of neck to top of head)

Any loss of consciousness

Any disorientation

Any convulsion

Any loss of sensation

Any loss of motor function

Limbs at abnormal angles

Amputations

Any burn of the face, hands, feet, or genitals (chemical, thermal, or radiation)

Any burn larger than the palm of your hand

Any inhalation of any abnormal substance

Profuse bleeding

Abnormal breathing patterns

Major Injuries Occurring in Radiological Areas

Protect yourself - consider the magnitude of any radiation field or airborne radioactivity

Stay with the victim

Don't move the victim unless there is a danger from some environmental emergency such as fire, explosion, hazardous material spill, or radiation field

If you must move the victim, drag them by either the hands or the feet to a safe area

Apply First Aid Only if you are trained to do so

Secure help - yell or phone, but don't leave the victim unless necessary

Send someone to meet the ambulance to guide the medical personnel to the victim

Prepare the area for access by the medical team

Begin a gross radiological survey of the immediate area near the victim, beginning with the victim

Be sure to survey any object that caused the injury

Provide information to medical personnel about the victim (what happened, how, when, location of phone and exits, indicate which areas on the victim are contaminated and include contamination values)

FACILITY HAZARDS

Power Reactors

Fission Products (β^{-} , γ), Activation Products (β^{-} , γ), Neutrons (during operation)

Production Reactors

Fission Products (β^{-} , γ), Activation Products (β^{-} , γ), Transuranics (α , β^{-} , γ), Neutrons (during operation)

Accelerators

Prompt Radiations: Bremsstrahlung, Photoneutrons, Photons, Protons Induced Radiations: Activation Products (β^{-} , γ) Highest Dose Equivalent Rate at Target

X-ray Devices

Primary Beam (unscattered X-rays) Secondary (scattered X-rays, mostly from patient) Leakage (X-rays at locations other than primary beam)

Nuclear Medicine

Highest dose received while eluting radioisotope generator and working near patients (γ)

Radioactive Waste Disposal Sites

Contamination of potable water supply (α , β ⁻), Occupational dose during off-loading and handling (γ)

Thorium-232 Decay Chain (including Thoron progeny)

Isotope and half-life		Energy (MeV) and abundance (%)					
²³² Th / 1.41E10 y	a 3.95 @ 24% 4.01 @ 76%	b No	g negligible				
²²⁸ Ra / 6.7 y	No	0.055 @ 100%	negligible				
²²⁸ Ac / 6.13 h	No	1.118 @ 35% 1.75 @ 12% 2.09 @ 12%	0.340 @ 15% 0.908 @ 25% 0.960 @ 20%				
²²⁸ Th / 1.91 y	5.34 @ 28% 5.43 @ 71%	No	0.084 @ 1.6% 0.214 @ 0.3%				
²²⁴ Ra / 3.64 d	5.45 @ 6% 5.68 @ 94%	No	0.241 @ 3.7%				
²²⁰ Rn (Thoron) / 55 s	6.29 @ 100%	No	0.550@0.07%				
²¹⁶ Po / 0.15 s	6.78 @ 100%	No	negligible				
²¹² Pb / 10.64 h	No	0.346 @ 81% 0.586 @ 14%	0.239 @ 47% 0.300 @ 3.2%				
²¹² Bi / 60.6 m	6.05 @ 25% 6.09 @ 10%	1.55 @ 5% 2.26 @ 55%	0.040 @ 2% 0.727 @ 7% 1.62 @ 1.8%				
²¹² Po / 304 ns	8.78 @ 100%	No	negligible				
²⁰⁸ TI / 3.10 m	No	1.28 @ 25% 1.52 @ 21% 1.80 @ 50%	0.511 @ 23% 0.583 @ 86% 2.614@ 100%				

 ^{212}Bi decays 64% of the time to ^{212}Po and 36% of the time to ^{208}TI

Uranium-238 Decay Chain (down to Polonium-218

Isotope and half-life	Ener	Energy (MeV) and abundance (%)					
	а	b	g				
²³⁸ U / 4.451E9 y	4.15 @ 25% 4.20 @ 75%	No	negligible				
²³⁴ Th / 24.1 d	No	0.103 @ 21% 0.193 @ 79%	0.063 @ 3.5% 0.093 @ 4%				
^{234m} Pa / 1.17m	No	2.29 @ 98%	0.765 @ 0.3% 1.001 @ 0.6%				
²³⁴ U / 2.47E5y	4.72 @ 28% 4.77 @ 72%	No	0.053 @ 0.2%				
²³⁰ Th / 8.0E4 y	4.62 @ 24% 4.68 @ 76%	No	0.068 @ 0.6% 0.142@0.07%				
²²⁶ Ra / 1602 y	4.60 @ 6% 4.78 @ 95%	No	0.186 @ 4%				
²²² Rn (Radon) / 3.823 d	5.49 @ 100%	No	0.510@0.07%				
²¹⁸ Po / 3.05 m	6.00 @ 100%	0.33 @ 0.019%	negligible				
\downarrow	\downarrow	\downarrow	\downarrow				

 $^{\rm 234m} Pa$ decays 99.87% of the time to $^{\rm 234} U$ & 0.13% of the time to $^{\rm 234} Pa$

Radon Decay Chain (from Uranium-238 decay)

Isotope and half-life	Energ	Energy (MeV) and abundance (%)				
	а	Ь	g			
²²² Rn (Radon) / 3.823 d	5.49 @ 100%	No	0.510@0.07%			
²¹⁸ Po / 3.05 m ²¹⁴ Pb / 26.8 m	6.00 @ 100% No	0.33 @ 0.019% 0.65 @ 50% 0.71 @ 40% 0.98 @ 6%	negligible 0.295 @ 19% 0.352 @ 36%			
²¹⁴ Bi / 19.7 m	negligible	1.00 @ 23% 1.51 @ 40% 3.26 @ 19%	0.609 @ 47% 1.120 @ 17% 1.764 @ 17%			
²¹⁴ Po / 164 us	7.69 @ 100%	No	0.799@0.014%			
²¹⁰ TI / 1.3 m	No	1.3 @ 25% 1.9 @ 56% 2.3 @ 19%	0.296 @ 80% 0.795 @100% 1.31 @ 21%			
²¹⁰ Pb / 21 y	negligible	0.016 @ 85% 0.061 @ 15%	0.047 @ 4%			
²¹⁰ Bi / 5.01 d	negligible	1.161 @ 100%	negligible			
²¹⁰ Po / 138.4 d	5.305 @ 100%	No	negligible			
²⁰⁶ TI / 4.19 m	No	1.571 @ 100%	negligible			

²¹⁸Po decays 99.98% of the time to ²¹⁴Pb & 0.02% of the time to ²¹⁸At ²¹⁴Bi decays 99.98% of the time to ²¹⁴Po & 0.02% of the time to ²¹⁰Tl ²¹⁰Bi decays ~ 100% of the time to ²¹⁰Po & 0.00013% of the time to ²⁰⁶Tl

YEAR 2001 CALENDER

S	Μ	т	w	т	F	S	S	М	т	w	т	F	S
7 14 21 28	N 8 K 22 29	2 9 16 23 30	Jan 3 10 17 24 31	uary 4 11 18 25	5 12 19 26	6 13 20 27	1 8 15 22 29	2 9 16 23 30	3 10 17 24 31	July <i>I</i> 11 18 25	5 12 19 26	6 13 20 27	7 14 21 28
			Feb	ruary						Aug	just		
4 11 18 25	5 12 P 26	6 13 20 27	7 14 21 28	1 8 15 22	2 9 16 23	3 10 17 24	5 12 19 26	6 13 20 27	7 14 21 28	1 8 15 22 29	2 9 16 23 30	3 10 17 24 31	4 11 18 25
			Mar	ch						Sep	temb	er	
4 11 18 25	5 12 19 26	6 13 20 27	7 14 21 28	1 8 15 22 29	2 9 16 23 30	3 10 17 24 31	2 9 16 23 30	L 10 17 24	4 11 18 25	5 12 19 26	6 13 20 27	7 14 21 28	1 8 15 22 29
			Apr	il						Oct	ober		
1 8 <i>E</i> 22 29	2 9 16 23 30	3 10 17 24	4 11 18 S	5 12 19 26	6 13 20 27	7 14 21 28	7 14 21 28	1 C 15 22 29	2 9 16 23 30	3 10 17 24 31	4 11 18 25	5 12 19 26	6 13 20 27
		_	Мау		_	_				Nov	vembe		_
6 13 20 27	7 14 21 M	1 8 15 22 29	2 9 16 23 30	3 10 17 24 31	4 11 18 25	5 12 19 26	4 11 18 25	5 <i>V</i> 19 26	6 13 20 27	7 14 21 28	1 8 15 7 29	2 9 16 23 30	3 10 17 24
			Jun	е		-				Dec	embe	er	
3 10 17 24	4 11 18 25	5 12 19 26	6 13 20 27	7 14 21 28	1 8 15 22 29	2 9 16 23 30	2 9 16 23 30	3 10 17 24 31	4 11 18 X	5 12 19 26	6 13 20 27	7 14 21 28	1 8 15 22 29

YEAR 2002 CALENDER

S	М	т	w	т	F	S	S	Μ	т	w	т	F	S
6 13 20 27	7 14 K 28	N 8 15 22 29	Jan 2 9 16 23 30	uary 3 10 17 24 31	4 11 18 25	5 12 19 26	7 14 21 28	1 8 15 22 29	2 9 16 23 30	July 3 10 17 24 31	1 11 18 25	5 12 19 26	6 13 20 27
			Feb	ruary						Aug			
3 10 17 24	4 11 P 25	5 12 19 26	6 13 20 27	7 14 21 28	1 8 15 22	2 9 16 23	4 11 18 25	5 12 19 26	6 13 20 27	7 14 21 28	1 8 15 22 29	2 9 16 23 30	3 10 17 24 31
			Mar	ch						Sep	temb	er	
3 10 17 24 E	4 11 18 25	5 12 19 26	6 13 20 27	7 14 21 28	1 8 15 22 29	2 9 16 23 30	1 8 15 22 29	L 9 16 23 30	3 10 17 24	4 11 18 25	5 12 19 26	6 13 20 27	7 14 21 28
			Apri								ober		
7 14 21 28	1 8 15 22 29	2 9 16 23 30	3 10 17 S	4 11 18 25	5 12 19 26	6 13 20 27	6 13 20 27	7 C 21 28	1 8 15 22 29	2 9 16 23 30	3 10 17 24 31	4 11 18 25	5 12 19 26
			May							Nov	embe		
5 12 19 26	6 13 20 M	7 14 21 28	1 8 15 22 29	2 9 16 23 30	3 10 17 24 31	4 11 18 25	3 10 17 24	4 V 18 25	5 12 19 26	6 13 20 27	7 14 21 <i>T</i>	1 8 15 22 29	2 9 16 23 30
			Jun	е						Dec	embe	r	
2 9 16 23 30	3 10 17 24	4 11 18 25	5 12 19 26	6 13 20 27	7 14 21 28	1 8 15 22 29	1 8 15 22 29	2 9 16 23 30	3 10 17 24 31	4 11 18 X	5 12 19 26	6 13 20 27	7 14 21 28

ALPHABETICAL INDEX

Page

- 3 Abbreviations
- 87 Activity vs. Particle Size
- 42 Air Monitoring
- 56 Appendix D of 10CFR 835
- 21 Biological Effects of Radiation

Calculations

- 41 Airborne Radioactivity
- 36 Alpha & Beta Crosstalk
- **36** Correction Factors for Detector Efficiency
- **36** Detector Efficiency
- 40 Dose Rate to air from a Point Beta Source
- **39** Exposure Rate from; point, line, disk source
- **38** Exposure Rate in an Air-filled Ionization Chamber
- 37 Inverse Square Law
- **38** Percent Resolution of a Gamma Spectroscopy Detector
- **39** Photon Fluence Rate
- 38 Shallow Dose Correction Factors
- 38 Stay-Time
- **34** Surface Contamination Correction Factors
- 48 Shield Thicknesses
- **39** Specific Gamma-Ray Constants
- 45 Surface Area
- 51 Transmission Factor (F) for Shielding an X-ray Device
- **38** True Count Rate Based on Resolving Time of a Gas-Filled Detector
- **27** TODE and TEDE
- 46 Volumes
- **40** 6CEN
- 97 Calendars for Years 2001 & 2002
- 65 Characteristic Radiations of Radionuclides

ALPHABETICAL INDEX

Page

- 7 Constants
- 4 Conversion of Units
- 52 Density of Various Materials
- 22 Dosimetry
- 61 DOT 49CFR173
- 89 Emergency Response
- 25 Equivalent Dose, Effective Dose, and Committed Effective Dose
- 93 Facility Hazards
- 47 Gamma & Neutron Half-Value Layers
- 77 Gamma Exposure vs Particle Size
- 79 Ingestion & Inhalation ALIs
- 59 Instrument Selection and Use
- 57 Posting
- 19 Public Radiation Dose Rates
- 18 Radiation Interactions
- 26 Radiation Weighting Factors
- 31 Radioactive Decay Charts
- 53 Radioactive Decay Graphs
- 20 Radon Facts
- 33 Reporting Radiological Data
- 41 Respiratory Protection
- 8 Rules of Thumb
- 51 Shielding Materials
- 63 Specific Activity
- 73 Specific Activity & Radiation Levels
- 29 Table of the Elements
- 55 Table 1 of DOE 5400.5
- 94 Thorium-232 and Uranium-238 Decay Chains
- 17 Units & Terminology

Corrections, additions, deletions, and comments to;

tvoss@lanl.gov, phone 505-667-8930, fax 505-665-6678.