Los Alamos

Radiation Monitoring

Notebook

LA-UR-00-2584
James T. (Tom) Voss, NRRPT, CHP

June 2000 (Feb. 2001 Update)

TABLE OF CONTENTS

Page \#
Abbreviations 3
Conversion of Units 4-7
Constants 7-8
Rules of Thumb 8-16
Units and Terminology 17
Radiation Interactions 18
Public Radiation Dose Rates 19
Radon Facts 20
Biological Effects of Radiation 21
Dosimetry 22-24
Equivalent Dose, Effective Dose, and Committed Effective Dose 25
Radiation Weighting Factors 26
Calculating TODE and TEDE 27
Effects of Radiation Exposure 28
Table of the Elements 29-30
Radioactive Decay Chart 31-32
Reporting Radiological Data 33
Surface Contamination Correction Factors 34-35
Detector Efficiency 36
Alpha \& Beta Crosstalk 36
Correction Factors for Efficiency 36
Inverse Square Law 37
Shallow Dose Correction Factors 37
Stay-Time Calculations 37
Calculating Exposure Rate in an Air-Filled Ionization Chamber 38
Calculating Percent Resolution of a Gamma Spectroscopy Detector 38
Calculating True Count Rate Based on Resolving Time of a Gas-Filled Detector 38
Calculating Gamma-Ray Constant 39
Calculating Photon Fluence Rate from a Point Source 39
Calculating Exposure Rate from a Point Source 39

TABLE OF CONTENTS

Page \#
Calculating Dose Rate to air from a Point Beta Source 39
Calculating Exposure Rate from a Line Source 40
Calculating Exposure Rate from a Disk Source 40
Calculating 6CEN 40
Calculating Airborne Radioactivity 41
Respiratory Protection Factors 41
Air Monitoring Calculations 42-44
Surface Area Calculations 45
Volume Calculations 46
Gamma \& Neutron Half-Value Layers 47
Shielding Calculations 48-50
Shielding Materials 51
Calculating Transmission Factor (X-ray) 51
Density of Various Materials 52
Radioactive Decay Graphs 53-54
Table 1 of DOE 5400.5 55
Appendix D of 10CFR835 56
Posting 57-58
Instrument Use and Selection 59-60
DOT 49CFR173 61-62
Specific Activity 63-64
Characteristic Radiations of Radionuclides 65-72
Specific Activity vs. Radiation Levels 73-76
Gamma Exposure vs. Particle Size 77-78
Ingestion and Inhalation ALIs 79-86
Activity vs. Particle Size 87-88
Emergency Response 89-92
Facility Hazards 93
Thorium-232 and Uranium-238 Decay Chains 94-96
Calendar Years 2001 and 2002 97-98
Alphabetical Index 99-100

ABBREVIATIONS

ampere	A, or amp
angstrom unit	D, or A
atmosphere	atm
atomic weight	at. wt.
cubic foot	ft^{3}, or cu. Ft.
cubic feet per minute	$\mathrm{ft}^{3} / \mathrm{min}$, or cfm
cubic inch	in^{3}, or cu. in.
cubic meter	m^{3}, or cu. m.
curie	Ci
day	day, or d
degree	deg, or ${ }^{0}$
disintegrations per minute	dpm
foot	ft .
gallon	gal.
gallons per minute	gpm
hour	h , or hr
inch	in.
liter	L
meter	m
micron	$\mu, \mu \mathrm{m}$, or mu
minute	min , or m
pounds per square inch	$\mathrm{lb} / \mathrm{in}^{2}$, or psi
roentgen	R
second	sec , or s
square centimeter	cm^{2}, or sq cm
square foot	ft^{2}, sq ft
square meter	m^{2}, or sqm
volt	V , or v
watt	W, or w
year	yr, or y

Page 3

CONVERSION OF UNITS

Multiply	\rightarrow	by	\rightarrow	To Obtain
To Obtain	\rightarrow	by	\rightarrow	Divide
		Length		
		$1 \mathrm{E}-8$		centimeters
Angstroms	2.54	centimeters		
Inches	3.2808	feet		
meters	0.6214	miles		
kilometers	5280	feet		
miles	$1 \mathrm{E}-6$		meters	
microns $(\mu \mathrm{m})$	$1 \mathrm{E}-3$		inches	
mils				

Area

Acres
Barns
Square centimeters 0.1550
Square meters 10.764
Square meters 3.861 E-7
Square miles
640

Volume

Cubic centimeters
Cubic centimeters
3.531 E-5

1 E-6
Cubic feet
28.316

Cubic feet 7.481
Liters 1.057
Liters 0.2642
Cubic meters 35.315
Cubic meters 1,000
Milliliters
1
square feet square centimeters
square inches
square feet
square miles
acres
cubic feet
cubic meters
liters
gallons
quarts
gallons
cubic feet
liters
cubic centimeters

CONVERSION OF UNITS

Multiply	\rightarrow	by	\rightarrow	To Obtain
To Obtain	\rightarrow	by	\rightarrow	Divide
		Time		
days		1440		minutes
days		86,400		seconds
work week		1.44 E5		seconds
work month		4.33		work weeks
work month		173.3		work hours
years (calendar)		365		days
years		8,760		hours
years		5.256 E5		minutes
years		3.1536 E7		seconds
		Density		
grams / cm^{3}		62.428		pounds / cubic foot
grams / cm^{3}		8.345		pounds / gallon
		Pressure		
atmospheres		1.0133		bars
atmospheres		1,033		grams / cm^{2}
atmospheres		14.70		pounds / in. ${ }^{2}$
atmospheres		760		mm Hg@ $0^{\circ} \mathrm{C}$
atmospheres		29.921		inches Hg @ $32{ }^{\circ} \mathrm{F}$
atmospheres		33.90		feet $\mathrm{H}_{2} \mathrm{O}$ @ $39.2{ }^{\circ} \mathrm{F}$
bars		1 E6		dynes / cm²
dynes / cm²		$1.0197 \mathrm{E}-3$		grams / cm ${ }^{2}$
grams / cm ${ }^{2}$		0.01422		pounds / square inch
Torr		1		$\mathrm{mm} \mathrm{Hg} @ 0{ }^{\circ} \mathrm{C}$
		Energy		
ergs		6.242 E11		electron volts
ergs		2.390 E-8		gram calories
electron volts		$1.602 \mathrm{E}-12$		ergs

CONVERSION OF UNITS

Multiply	\rightarrow	by	\rightarrow	To Obtain
To Obtain	\rightarrow	by	\rightarrow	Divide
		Mass		
grams		0.03527		ounces
kilograms		2.2046		pounds
pounds		16		ounces
pounds		453.59		grams
		Others		
amperes		2.998 E9		electrostatic units / sec
amperes		6.242 E18		electronic charges / sec
coulombs		6.242 E18		electronic charges
radians		57.296		degrees
		Radiologica		
rads		100		ergs / gram
rads		6.242 E13		electron volts / gram
roentgens		87.7		ergs / gram of air
roentgens		1.61 E 12		ion pairs / gram of air
roentgens		5.47 E13		electron volts / gm of air
sievert		100		rem
curies		3.7 E10		dps
curies		2.22 E12		dpm
$\mu c u r i e s$ / sq. meter		220		dpm / cm ${ }^{2}$
megacuries / sq. mile		0.386		curies / square meter
$\mathrm{dpm} / \mathrm{m}^{3}$		4.5 E-13		microcuries / cm ${ }^{3}$
bequerels		$2.7027 \mathrm{E}-11$		curies
bequerels		1		dps
BTU		$1.28 \mathrm{E}-8$		grams ${ }^{235} \mathrm{U}$ fissioned
BTU		$1.53 \mathrm{E}-8$		grams ${ }^{235} \mathrm{U}$ destroyed
BTU		3.29 E 13		fissions
fission of $1 \mathrm{~g}^{235} \mathrm{U}$		1		megawatt-days
fissions		8.9058 E-18		kilowatt-hours
fissions		$3.204 \mathrm{E}-4$		ergs
		Page		

CONVERSION OF UNITS

Multiply	\rightarrow	by	\rightarrow		To Obtain
To Obtain	\rightarrow	by		\rightarrow	Divide
		Power			
joules/sec		1 E7			ergs / second
watts		1 E7			ergs / second
watts		0.001341			horsepower
watts		3.1 E10			fissions / second
		MULTIPLES AND	JBMULTIPL		
10^{12}	tera	T	10^{-1}	deci	d
10^{9}	giga	G	10^{-2}	centi	c
10^{6}	mega	M	10^{-3}	milli	m
10^{3}	kilo	k	10^{-6}	micro	μ
10^{2}	hecto	h	10^{-9}	nano	n
10^{1}	deka	da	10^{-12}	pico	p
10^{0}	1	1	10^{-15}	femto	f
			10^{-18}	atto	a
		GREEK ALPHAB			

A	α	Alpha	N	ν	Nu
B	β	Beta	Ξ	ξ	Xi
Γ	γ	Gamma	O	o	Omicron
Δ	δ	Delta	Π	π	Pi
E	ε	Epsilon	P	ρ	Rho
Z	ζ	Zeta	Σ	σ	Sigma
H	η	Eta	T	τ	Tau
Θ	θ	Theta	Y	v	Upsilon
I	1	lota	Φ	ϕ	Phi
K	κ	Kappa	X	χ	Chi
Λ	λ	Lambda	Ψ	ψ	Psi
M	μ	Mu	Ω	ω	Omega

CONSTANTS

Avogadro's number $\left(\mathrm{N}_{0}\right)$	6.02252 E 23
electron charge (e)	$4.80298 \mathrm{E}-10 \mathrm{esu}$
electron rest mass $\left(\mathrm{m}_{\mathrm{e}}\right)$	$9.1091 \mathrm{E}-28 \mathrm{~g}$
acceleration gravity (g)	$32.1725 \mathrm{ft} / \mathrm{sec}^{2}$
@ sea level \& 45^{0} latitude	$980.621 \mathrm{~cm} / \mathrm{sec}^{2}$
Planck's constant (h)	$6.625 \mathrm{E}-27 \mathrm{erg}-\mathrm{sec}$
velocity of light (c)	$2.9979 \mathrm{E} 10 \mathrm{~cm} / \mathrm{sec}$
velocity of light (c)	$186,280 \mathrm{miles} / \mathrm{sec}$
ideal gas volume $\left(\mathrm{V}_{0}\right)$	$22,414 \mathrm{~cm} / \mathrm{mole} \mathrm{(STP)}$
neutron mass	$1.67482 \mathrm{E}-24 \mathrm{~g}$
proton mass	$1.67252 \mathrm{E}-24 \mathrm{~g}$
ratio of proton to electron mass	$1,836.13$
natural base of logarithms (e)	2.71828
π	3.14159

A gram-molecular weight of any gas contains (Avogadro's number), N_{0} (6.02252 E23) atoms and occupies a volume of $22,414 \mathrm{~cm}^{3}$ at STP.

Temperature

$$
\begin{aligned}
{ }^{0} \mathrm{C} & =\left({ }^{0} \mathrm{~F}-32\right)(5 / 9) \\
{ }^{0} \mathrm{~K} & ={ }^{0} \mathrm{C}+273.1
\end{aligned}
$$

$$
\begin{aligned}
& { }^{0} \mathrm{~F}=1.8{ }^{0} \mathrm{C}+32 \\
& { }^{0} \mathrm{R}={ }^{0} \mathrm{~F}+459.58
\end{aligned}
$$

Conversion Equations

grams/sq. cm $\quad=\quad$ density $\left(\mathrm{g} / \mathrm{cm}^{3}\right) \times$ thickness (cm)

Photon energy $(\mathrm{keV})=\quad$ 12.4/wavelength (A)

Page 8

RULES OF THUMB FOR ALPHA PARTICLES

1. An alpha particle of at least 7.5 MeV energy is needed to penetrate the nominal protective layer of the skin ($7 \mathrm{mg} / \mathrm{cm}^{2}$ or 0.07 mm).
2. The alpha emissions and energies of the predominant particles from $1 \mu \mathrm{~g}$ of several common materials are:

	DPM per $\boldsymbol{\mu g}$	Alpha Energy (MeV)
${ }^{238} \mathrm{Pu}$	$39,000,000$	$5.50(72 \%)$
${ }^{239} \mathrm{Pu}$	140,000	$5.15(72.5 \%)$
${ }^{240} \mathrm{Pu}$	500,000	$5.16(76 \%)$
${ }^{242} \mathrm{Pu}$	8,700	$4.90(76 \%)$
${ }^{\text {a }} \mathrm{Natural} \mathrm{U}$	1.5	$4.20(37 \%), 4.77(36 \%)$
Oralloy $\left(93 \%{ }^{235} \mathrm{U}\right)$	160	$4.77(\sim 80 \%)$
${ }^{\text {b }}$ Natural Th	0.5	$4.01(38 \%), 5.43(36 \%)$
D-38 (DU, tuballoy)	1	$4.20(\sim 60 \%)$

${ }^{\text {a }}$ Includes ${ }^{234} \mathrm{U}$ in equilibrium.
${ }^{\mathrm{b}}$ Includes ${ }^{228} \mathrm{Th}$ in equilibrium. Depending upon the time since chemical separation, ${ }^{228} \mathrm{Th}$ can decrease to give a net disintegration rate lower than 0.5.
${ }^{\text {c. With } 2 \pi}(50 \%)$ geometry, the surface of a thick uranium metal (tuballoy) source gives
~ 2400 alpha counts $/ \mathrm{min}$ per cm^{2}. Depleted uranium (D-38) gives ~ 800 alpha cpm $/ \mathrm{cm}^{2}$.
3. Alpha particle range in cm of air at 1 atmosphere
$R_{a}=0.56 \mathrm{E}(\mathrm{E}<4 \mathrm{MeV})$
$R_{a}=1.24 \mathrm{E}-2.62(\mathrm{E}>4 \mathrm{MeV})$
Alpha particles lose about 60 KeV of energy per mm of air at 1 atmosphere.

RULES OF THUMB FOR ALPHA PARTICLES

4. Detector window thicknesses cause alpha particles to lose energy at about 1 MeV per $\mathrm{mg} / \mathrm{cm}^{2}$ of window thickness. Therefore, a detector with a window thickness of $3 \mathrm{mg} / \mathrm{cm}^{2}$ (such as sealed gas-proportional pancake alpha/beta detectors and pancake GM detectors) will not detect alpha emitters of less than 3 MeV . These detectors will have very low efficiency for low energy alpha particles or attenuated alpha particles.
5. Air proportional alpha particles have a flatter energy vs efficiency response than gasproportional or GM detectors.
6. Half-value thickness vs alpha energy
A. For surface alpha contamination first determine an unshielded net count rate (subtract background) with your instrument.
B. Place a sheet of mylar between the source and the detector and take another net reading. Some typical thickness of mylar are $0.29,0.45,0.85$, and $0.9 \mathrm{mg} / \mathrm{cm}^{2}$.
C. Calculate the half-value density thickness by using this formula.

$$
\mathrm{mg} / \mathrm{cm}^{2}=\frac{\mathrm{mg} / \mathrm{cm}^{2} \text { of the mylar } \times-0.693}{\ln \text { (shielded net count rate / unshielded net count rate) }}
$$

Note: make sure to take the natural log of the count rates
D. Approximate the alpha energy in MeV by using this formula.
$\mathrm{MeV}=4.5 \times \sqrt{\text { thickness from 'C' }}$

RULES OF THUMB FOR BETA PARTICLES

1. Beta particles of at least 70 keV energy are required to penetrate the nominal protective layer of the skin ($7 \mathrm{mg} / \mathrm{cm}^{2}$ or 0.07 mm).
2. The average energy of a beta-ray spectrum is approximately one-third the maximum energy.
3. The range of beta particles in air is $\sim 12 \mathrm{ft} / \mathrm{MeV}$.
4. The range of beta particles (or electrons) in grams $/ \mathrm{cm}^{2}$ (thickness in cm multiplied by the density in grams $/ \mathrm{cm}^{3}$) is approximately half the maximum energy in MeV. This rule overestimates the range for low energies (0.5 MeV) and low atomic numbers, and underestimates for high energies and high atomic numbers.
5. The dose rate in rads per hour in an infinite medium uniformly contaminated by a beta emitter is $2.12 \mathrm{EC} / \rho$ where E is the average beta energy per disintegration in MeV, C is the concentration in $\mu \mathrm{Ci} / \mathrm{cm}^{3}$, and ρ is the density of the medium in grams $/ \mathrm{cm}^{3}$. The dose rate at the surface of the mass is one half the value given by this relation. In such a large mass, the relative beta and gamma dose rates are in the ratio of the average energies released per disintegration.
6. The surface dose rate through $7 \mathrm{mg} / \mathrm{cm}^{2}$ from a uniform thin deposition of $1 \mu \mathrm{Ci} / \mathrm{cm}^{2}$ is about 9 rads / h for energies above about 0.6 MeV . Note that in a thin layer, the beta dose rate exceeds the gamma dose rate, for equal energies released, by about a factor of 100 .
7. The bremsstrahlung from a $1 \mathrm{Ci}^{32}$ aqueous solution in a glass bottle is $\sim 3 \mathrm{mrad} / \mathrm{h}$ at 1 m .
8. For a $\mathrm{Sr}^{90} / \mathrm{Y}^{90}$ source greater than 10 cm in diameter, a reading of $0.1 \mathrm{mR} / \mathrm{h}$ on a portable Geiger counter with the window open corresponds to a contamination level of $3.5 \mathrm{E}-5 \mu \mathrm{Ci} / \mathrm{cm}^{2}$ ($6.9 \mathrm{E}-2 \mu \mathrm{Ci}$ total). For a small source with a diameter of 0.75 cm , the same reading corresponds to $3.5 \mathrm{E}-3 \mu \mathrm{Ci} / \mathrm{cm}^{2}$ (1.5 $\mathrm{E}-3 \mu \mathrm{Ci}$ total).

RULES OF THUMB FOR BETA PARTICLES

9. Half-value thickness vs beta energy

Isotope	B max energy (KeV)	Half-Value Thickness
TC^{99}	292	$7.5 \mathrm{mg} / \mathrm{cm}^{2}$
Cl^{36}	714	$15 \mathrm{mg} / \mathrm{cm}^{2}$
$\mathrm{Sr}^{90} / \mathrm{Y}^{90}$	$546 / 2270$	$50 \mathrm{mg} / \mathrm{cm}^{2}$

$\mathrm{U}^{238} \quad$ Betas from short lived progeny
191 / 2290
A. For surface beta contamination first determine an unshielded net count rate (subtract background) with your instrument.
B. Place one sheet of this notebook paper between the source and the detector and take another net reading.
(1) A single sheet of paper will stop all alpha particles and some low energy beta particles. If the new net count rate is zero, then the contamination is alpha only and/or a very low energy beta such as C^{14}.
(2) The single sheet of paper will reduce the count rate from a 400 KeV beta particle by approximately one-half.
C. Continue adding layers of paper between the source of contamination and the detector until the net count rate is less than one-half of the unshielded net count rate.
D. Multiply the number of pages used for shielding by 7.5. This is the total halfvalue thickness in $\mathrm{mg} / \mathrm{cm}^{2}$.
E. If you are unable to decrease the net count rate to one-half, then use this formula to estimate the half-value thickness.
$\mathrm{mg} / \mathrm{cm}^{2}=$
7.5 x \# of sheets of paper x-0.693

In (shielded net count rate / unshielded net count rate)
F. Approximate the beta energy in KeV by using this formula.

$$
\mathrm{KeV}=250 \times \sqrt{\text { thickness from 'D' or "E' above }-300}
$$

RULES OF THUMB FOR GAMMA RAYS

1. For point sources with energies between 0.07 and 4 MeV , the exposure rate in roentgens per hour at 1 ft is given within 20% by 6 CEN , where C is the number of curies, E is the average gamma energy per disintegration in $\mathrm{MeV}, \& \mathrm{~N}$ is the γ abundance.
2. The dose rate 1 m above a flat, infinite plane contaminated with a thin layer $\left(1 \mathrm{Ci} / \mathrm{m}^{2}\right)$ of gamma emitters is:

Dose rate (Rads / h)
0.4
7.2
0.6
0.8
1.0
1.2

10
13
16
19
3. The dose rate to tissue in rads per hour in an infinite medium uniformly contaminated by a gamma emitter is $2.12 \mathrm{EC} / \rho$, where C is the number of microcuries per cubic centimeter, E is the average gamma energy per disintegration in MeV , and ρ is the density of the medium. At the surface of a large body, the dose rate is about half of this. At ground level (one-half of an infinite cloud), the dose rate from a uniformly contaminated atmosphere is 1600 EC rads $/ \mathrm{h}$ per $\mu \mathrm{Ci} / \mathrm{cm}^{3}$.
4. The radiation scattered from the air (skyshine) from a $100 \mathrm{Ci}^{60} \mathrm{Co}$ source 1 ft behind a 4-ft-high shield is $\sim 100 \mathrm{mR} / \mathrm{h}$ at 6 in . from the outside of the shield.

RULES OF THUMB FOR NEUTRONS

The number of neutrons per square centimeter per second at a distance R from a small source emitting Q neutrons per second without shielding is given by;

$$
\frac{\mathrm{n}}{\mathrm{~cm}^{2}-\mathrm{sec}}=\frac{\mathrm{Q}}{4 \pi R^{2}}=\frac{0.08 \mathrm{Q}}{\mathrm{R}^{2}}
$$

For α, η neutron sources:
Q (neutrons per million alpha particles) $=0.152 \mathrm{E}^{3.65}$
Where E is the alpha particle energy in MeV
This holds true for Be targets; multiply by 0.16 for B targets, multiply by 0.05 for F targets.

APPROXIMATE NEUTRON ENERGIES

cold neutrons	$0-0.025 \mathrm{eV}$
thermal neutrons	0.025 eV
epithermal neutrons	$0.025-0.4 \mathrm{eV}$
cadmium neutrons	$0.4-0.6 \mathrm{eV}$
epicadmium neutrons	$0.6-1 \mathrm{eV}$
slow neutrons	$1 \mathrm{eV}-10 \mathrm{eV}$
resonance neutrons	$10 \mathrm{eV}-300 \mathrm{eV}$
intermediate neutrons	$300 \mathrm{eV}-1 \mathrm{MeV}$
fast neutrons	$1 \mathrm{MeV}-20 \mathrm{MeV}$
relativistic neutrons	$>20 \mathrm{MeV}$

Note: A thermal neutron is one which has the same energy and moves at the same velocity as a gas molecule does at a temperature of 20 degrees C. The velocity of a thermal neutron is $2200 \mathrm{~m} / \mathrm{sec}(\sim 5,000 \mathrm{mph})$.

CRITICALITY BADGE NEUTRON RESPONSE

Indium	\Rightarrow	thermal \& 1.5 eV
Gold	\Rightarrow	thermal \& 5 eV
Indium	\Rightarrow	1 MeV threshold
Sulphur	\Rightarrow	2.9 MeV threshold
Copper	\Rightarrow	11.4 MeV threshold

RULES OF THUMB FOR NEUTRONS

α, η sources	η energy in MeV	neutrons per million a decays
$\mathrm{Pu}^{239} \mathrm{Be}$	4.5	61
$\mathrm{Po}^{210} \mathrm{Be}$	4.2	71
$\mathrm{Pu}^{238} \mathrm{Be}$	4.5	79
$\mathrm{Am}^{241} \mathrm{Be}$	4.5	76
$\mathrm{Cm}^{244} \mathrm{Be}$	4	100
$\mathrm{Cm}^{242} \mathrm{Be}$	4	112
$\mathrm{Ra}^{226} \mathrm{Be}$	spectrum, 4, 5	502
$\mathrm{Ac}^{227} \mathrm{Be}$	multiple, 4.6	702
$\mathrm{Am}^{241} \mathrm{~B}$		13
$\mathrm{Am}^{241} \mathrm{~F}$		4.1
$\mathrm{Am}^{241} \mathrm{Li}$	0.7	1.4
$\mathrm{Po}^{210} \mathrm{Li}$	0.48	1.2
$\mathrm{Po}^{210} \mathrm{~B}$	2.5	10
$\mathrm{Po}^{210} \mathrm{~F}$	0.42	3
$\mathrm{Pu}^{238} \mathrm{C}^{13}$		11
$\mathrm{Ra}^{226} \mathrm{~B}$	3.0	80
neutron yield is the average of calculated and experimental		
$\mathrm{Cm}^{244} \mathrm{Be}$ does not include neutrons from spontaneous fission		
Ra^{226} and Ac^{227} include progeny effects		
Spontaneous fission		$\eta / \mathbf{s e c} / \mathrm{g}$
Cm^{244}		1.2 E 7
Cf^{252}		2.3E12
Pu^{239}		0.03
Am^{241}		0.6
Bk^{249}		2.7E5

MISCELLANEOUS RULES OF THUMB

1. One watt of power in a reactor requires 3.1 E 10 fissions per second. In a reactor operating for more than 4 days, the total fission products are about 3 Ci / watt at 1.5 min after shutdown. At 2 yr after shutdown, the fission products are approximately 75 Ci / MW-day.
2. The quantity of a short-lived fission product in a reactor which has been operated about four times as long as the half-life is given by;
$\mathrm{Ci}=3.7 \mathrm{E} 10(\mathrm{FY})(\mathrm{PL}) / 3.7 \mathrm{E} 10 \quad \approx \quad(\mathrm{FY})(\mathrm{PL})$,
where FY is the fission yield $(\% / 100)$ and $P L$ is the power level in watts.
3. The correction factor for unsealed ion chambers to standard temperatures and pressures $\left(0^{\circ} \mathrm{C}\right.$ and 760 mm of Hg$)$ is;
$f=(t+273) /(273) \times(760 / P)=2.78(t+273) / P$, where t is the temperature in degrees C and P is the barometric pressure in $m m$ of Hg .
4. The activity of an isotope (without radioactive daughter) is reduced to less than 1% after seven half-lives.
5. Uranium Enrichment by \% by Weight

	Typical		Enriched		
	Natural	Commercial	10%	20%	Depleted
U^{238}	99.2739	97.01	89.87	79.68	99.75
U^{235}	0.7204	2.96	10.0	20.0	0.25
U^{234}	0.0057	0.03	0.13	0.32	0.0005

Uranium Enrichment by \% by Activity

	Typical		Enriched		
	Natural	Commercial	10%	20%	Depleted
U^{238}	48.72	14.92	3.57	1.31	90.33
U^{235}	2.32	3.02	2.55	2.09	1.49
U^{234}	48.96	82.06	93.88	96.60	8.18
			Page 16		

RADIATION INTERACTIONS

Charged Particles

Ionization, Excitation, Bremsstrahlung (β^{-}), Annihilation (β^{+})

Neutrons

Scattering (E > 0.025 eV)
Elastic (energy and momentum are conserved)
Inelastic (photon emitted)
Absorption ($\mathrm{E} \leq 0.025 \mathrm{eV}$)
Radiative Capture (n, γ)
Particle Emission (n, a) (n, p) (n, n)
Fission (n, f)

Gamma or X-ray photons

Photoelectric Effect (generally $\leq 1 \mathrm{MeV}$)
Compton Scattering (generally $200 \mathrm{keV}-5 \mathrm{MeV}$)
Pair Production (minimum 1.022 MeV)

Scattered Photon

$$
\mathrm{T}^{\prime}=\mathrm{T} /\left[1+\mathrm{T}(1-\cos \theta) / \mathrm{m}_{0} \mathrm{c}^{2}\right]
$$

where $\mathrm{c}^{2}=931.5 \mathrm{MeV} / \mathrm{amu}$

Energy Calculation

$\mathrm{m}=$ mass of electron $=5.4858 \mathrm{E}-4 \mathrm{amu}$
Fraction of Energy Lost by Electrons through Bremsstrahlung in a medium
$f=0.0007 Z_{\text {e }}$
where; $\quad T_{e}=K$. E. of electron, $Z=$ atomic \#
Photon Attenuation: $\mathrm{I}_{\mathrm{x}}=\quad=\quad \mathrm{l}_{\mathrm{o}} \mathrm{e}^{\mu \mathrm{x}}$
Interaction Probability per gram:
Photoelectric $\propto \quad Z^{3} / E^{3}$
Compton independent of Z
Pair Production $\quad \propto \quad Z^{1}$
$\mu_{\text {Total }}=\mu_{\mathrm{pe}}+\mu_{\mathrm{cs}}+\mu_{\mathrm{cc}}$
$\mathrm{W}_{\text {Air }}=33.9 \mathrm{eV}$ per ion pair
Specific Ionization $=S / W$ (i.p. $/ \mathrm{cm}$)

PUBLIC RADIATION DOSES

Average per capita US Dose
Living in Los Alamos
Flying from NY to LA
Chest x-ray
Full mouth dental x-ray

200 mrem / yr
327 mrem / yr
2.5 mrem / trip

10 mrem / exam
9 mrem / exam

The external dose rate for cosmic rays doubles for each mile increase in elevation.

BACKGROUND RADIATION

Cosmic	$=28 \mathrm{mrem} / \mathrm{yr}$
Rocks	$=28 \mathrm{mrem} / \mathrm{yr}$
Internal	$=36 \mathrm{mrem} / \mathrm{yr}$
Medical x-rays	$=20 \mathrm{to} 30 \mathrm{mrem} / \mathrm{yr}$
Nuclear medicine	$=2 \mathrm{mrem} / \mathrm{yr}$
TOTAL US Ave	$\approx 120 \mathrm{mrem} / \mathrm{yr}$
Ave H_{E} from radon	$=200 \mathrm{mrem} / \mathrm{yr}$

Ave H_{E} from medical x-ray procedures (in mrem per exam):
Skull 20, Upper GI 245, Hip 65, Chest 6, Kidney 55, Dental 54.5

NATURALLY OCCURRING RADIONUCLIDES

Primordial

K^{40}
Rb^{87}
Natural U and Th

Cosmogenic

Tritium
Be^{7}
C^{14}

Comparative Risks of Radiation Exposure

Health Risk
Smoking 1 pack of cigarettes / day
20\% overweight
Average US alcohol consumption
Home accidents
Occupational exposure

Estimated Days of Life Lost

2370 days
985 days
130 days
95 days

- 5.0 rem / year 32 days
- 0.5 rem / year

3 days

RADON FACTS

1 working level	$=3 \mathrm{DAC} \mathrm{R2}{ }^{222}$ (including progeny)
	$=1.3 \mathrm{E} 5 \mathrm{MeV} /$ liter of air a energy
	$=100 \mathrm{pCi} /$ liter $(1 \mathrm{E}-7 \mu \mathrm{Ci} / \mathrm{ml})$
1 working level-month	$=1$ rem CEDE

EPA ACTION LEVELS FOR RESIDENCES

Concentration (pCi/L) Sampling frequency
0-4
4-20
20-200
>200
Wells > 25 residences,
must implement radon reduction method at water concentrations $>300 \mathrm{pCi} / \mathrm{L}$

$4 \mathrm{pCi} / \mathrm{L}$ in typical living area	≈ 1.03 working level-month ≈ 1 rem
$10,000 \mathrm{pCi} / \mathrm{L}$ in water	$\approx 1 \mathrm{pCi} / \mathrm{L}$ in air thru evaporation

Page 20

BIOLOGICAL EFFECTS OF RADIATION

Radiosensitivity Criteria Rate of Reproduction
Age
Degree of Specialization

Acute Radiation Effects

$25-100 \mathrm{rad}$	Subclinical range, minor blood chemistry changes
$100-200 \mathrm{rad}$	White blood cell (leukocyte) loss
$>250 \mathrm{rad}$	Acute Radiation Syndrome (Nausea, Chills, Epilation, Erythema)
$>350 \mathrm{rad}$	Hematopoietic Syndrome (Decrease in red blood cell production)
450 rad	LD $50 / 60$
$>600 \mathrm{rad}$	Gastrointestinal Syndrome (Death of epithelial cells, Blood 1000 rad
$>1000 \mathrm{rad}$	LD 100 / 60
	Central Nervous System Syndrome

Radiation Dose Risk

Report
Additional Cancer Deaths
BEIR III, 1980
3 in 10,000 per 1 rem
(also Reg Guide 8.29)
BEIR V, $1990 \quad 800$ in 100,000 per 10 rad

RADIATION BIOLOGY

| Relative Biological Effect | $=\frac{\text { Dose of } 250 \mathrm{kVp} \mathrm{x} \text {-rays }}{}$ |
| :--- | :--- | :--- |
| Dose of other radiation | |

DOSIMETRY

1 Bq	$=$	1 dps	$=$	$2.7 \mathrm{E}-11 \mathrm{Ci}$
1 Gy	$=$	1 joule $/ \mathrm{kg}$	$=$	100 rads
$\mathrm{H}_{\mathrm{T}}(\mathrm{Sv})$	$=$	$\mathrm{D}(\mathrm{Gy}) \times \mathrm{Q}(\mathrm{Sv} / \mathrm{Gy})$		

Quality Factors (Q) values:

x-rays, beta, gamma	$=$	1
neutrons: thermal	$=$	2
	fast	$=$
alpha		20

Effective Dose Equivalent EDE $\quad=\quad \mathrm{H}_{\mathrm{E}} \quad=\quad \Sigma \mathrm{W}_{T} \mathrm{H}_{T}$
W_{T} values: gonads 2.5, breast 0.15 , red marrow 0.12 , lung 0.12 , thyroid 0.03 , bone surface 0.03 , remainder 0.3
D.E. rate $(\mathrm{Sv} / \mathrm{hr})=0.15 \mathrm{~A}(\mathrm{TBq}) \mathrm{E} / \mathrm{r}^{2}$

Neutron flux to dose rate conversion:
Fast: $1 \mathrm{mrem} / \mathrm{hr}$ per $6 \mathrm{n} / \mathrm{cm}^{2}-\mathrm{sec}$
Slow: 1 mrem / hr per $272 \mathrm{n} / \mathrm{cm}^{2}$-sec

DOSE EQUIVALENT CALCULATIONS

1 Roentgen	$=2.58 \mathrm{E}-4 \mathrm{C} / \mathrm{kg} \quad$ or $1 \mathrm{esu} / \mathrm{cm}^{3}$
	$=87 \mathrm{ergs} / \mathrm{g} \quad$ or $2.082 \mathrm{E} 9 \mathrm{ip} / \mathrm{cm}^{3}$
	$=7.02 \mathrm{E} 4 \mathrm{MeV} / \mathrm{cm}^{3} \mathrm{in}$ air @ STP
or	$=98$ ergs $/ \mathrm{g} \mathrm{in} \mathrm{tissue}$
$1 \mathrm{R} / \mathrm{hr}$	$\sim 1 \mathrm{E}-13$ Amperes $/ \mathrm{cm}^{3}$
1 rad	$=100 \mathrm{ergs} / \mathrm{g} \mathrm{in} \mathrm{any} \mathrm{absorber}$
$\rho_{\text {air }}$	$=0.001293 \mathrm{~g} / \mathrm{cm}^{3}$
$\mathrm{~W}_{\text {air }}$	$=33.7 \mathrm{eV}$
1 Ampere	$=1 \mathrm{Coulomb} / \mathrm{sec}$
$\mathrm{STP}_{\text {air }}$	$=760 \mathrm{~mm} \mathrm{Hg} \mathrm{@} 0^{\circ} \mathrm{C}$ or $14.7 \mathrm{lb} / \mathrm{in}^{2} @ 32^{\circ} \mathrm{F}$

INTERNAL DOSIMETRY

Calculating CDE ICRP 26/30

CDE = $\quad 1 / \mathrm{nALI} \times 50 \mathrm{rem}$
CDE = 50 yr committed dose equivalent to irradiated tissue
I = Intake
nALI $=$ non-stochastic ALI $=50$ rem $/ h_{\text {max }}$
$\mathrm{h}_{\max }=$ greatest dose equivalent found in the exposure-to-dose conversion tables

Calculating CEDE

CEDE $=\quad \mathrm{I} / \mathrm{sALI} \times 5 \mathrm{rem}$
CEDE $=\quad 50 \mathrm{yr}$ committed effective dose equivalent
I = Intake
OR CEDE $=\quad \sum_{i=1}^{n} W_{T}$
CEDE $=50 \mathrm{yr}$ committed effective dose equivalent to individual tissue
$\mathrm{W}_{\mathrm{T}}=$ tissue weighting factor

Calculating DAC

DAC = ALI / $2000 \mathrm{hr} \times 1.2 \mathrm{E} 6 \mathrm{ml} / \mathrm{hr}$
1 DAC $=2.5$ mrem CEDE if based on sALI OR 25 mrem (ICRP 26) CDE to an organ or tissue if based on nALI

Calculating DAC-hours

DAC Fraction $\quad=\quad \Sigma_{i}($ concentration $/ \mathrm{DAC}) / \mathrm{PF}$
DAC fraction x time (hours) $=$ DAC-hours

INTERNAL DOSIMETRY

Intake $\mathrm{I}(\mathrm{Bq})$	$=\mathrm{A}_{\mathrm{t}}(\mathrm{Bq}) / \mathrm{IRF}_{\mathrm{t}}$
Body burden q_{t}	$=\mathrm{q}_{0} \mathrm{e}^{-\lambda \text { eff } \mathrm{t}}$
CEDE or H_{50}	$=50 \mathrm{mSv} \times \mathrm{I} / \mathrm{ALI}$
TEDE	$=\mathrm{CEDE}+$ Deep Dose Equivalent

INTERNAL DOSIMETRY

Effective Half-Life

$$
t_{\text {eff }}=t_{r} \times t_{b} /\left(t_{r}+t_{b}\right)
$$

where; $\mathrm{t}_{\mathrm{r}}=$ radioactive half-life
$t_{b}=$ biological half-life

Effective Removal Constant

$$
\lambda_{\text {eff }}=\lambda_{\mathrm{r}}+\lambda_{\mathrm{b}}
$$

where; $\lambda_{r}=$ decay constant $=0.693 / t_{1 / 2}$
$\lambda_{b}=$ biological removal constant $-0.693 / t_{b}$

Calculating Internal Dose (ICRP 30)

$$
\mathrm{H}_{50}(\mathrm{~T} \leftarrow \mathrm{~S})=\quad(1.6 \mathrm{E}-10) \mathrm{U}_{\mathrm{S}} \mathrm{SEE}(\mathrm{~T} \leftarrow \mathrm{~S})
$$

$\mathrm{H}_{50}=50$ year dose equivalent commitment in sieverts

Where; SEE is the Specific Effective Energy modified by a quality factor for radiation absorbed in the target organ (T) for each transformation in the source organ (S) expressed in $\mathrm{MeV} / \mathrm{g}$.

$$
\text { SEE } \quad=\quad \Sigma Y \bullet E \bullet A F \bullet Q / M_{T}
$$

Where;	Y	$=$	yield of radiations per transformation
	E		average energy of the radiation
	AF	=	absorbed fraction of energy absorbed in the target organ (T) per emission of radiation in the source organ (S)
	Q	=	quality factor
	$\mathrm{M}_{\text {T }}$	=	mass of the target organ
	U_{S}	=	number of nuclear transformations in the source organ (S) during the time interval for which the dose is to be calculated

ICRP 60 Equivalent Dose

$\mathrm{H}_{\mathrm{T}}=\Sigma_{\mathrm{R}} \mathrm{W}_{\mathrm{R}} \mathrm{D}_{\mathrm{T}, \mathrm{R}}$
$H_{T}=$ equivalent dose in tissue T
$\mathrm{W}_{\mathrm{R}}=$ radiation weighting factor
$D_{T, R}=$ absorbed dose averaged over tissue T due to radiation R

ICRP 60 Effective Dose

$\mathrm{E}=\Sigma_{T} \mathrm{~W}_{T} \mathrm{H}_{T}$
$E=$ effective dose to the individual
$\mathrm{W}_{\mathrm{T}}=$ tissue weighting factor
$H_{T}=$ equivalent dose in tissue(s) T

ICRP 60 Committed Effective Dose

$$
\begin{aligned}
& E(50)=\quad \Sigma^{T=j} \mathrm{~T}_{\mathrm{T}=1} \mathrm{~W}_{T} \mathrm{H}_{T}(50)+\mathrm{W}_{\text {remainder }} \Sigma^{\mathrm{T}=1} \underline{\underline{T}=K} \underline{\mathrm{~m}_{\underline{T}}} \underline{H}_{T} \underline{(50)} \\
& \Sigma^{T=1}{ }_{T=K} \mathrm{~m}_{T} \\
& E(50) \quad=\quad \text { committed effective dose } \\
& W_{T} \quad=\quad \text { tissue weighting factor for tissues and organs } T_{i} \text { to } T_{j} \\
& \mathrm{~m}_{\mathrm{T}} \quad=\quad \text { mass of the remainder tissues } \mathrm{T}_{\mathrm{K}} \text { to } \mathrm{T}_{1} \\
& \mathrm{~W}_{\text {remainder }}=0.05 \text { (the } \mathrm{W}_{T} \text { assigned to the remainder tissues) }
\end{aligned}
$$

ICRP 23 REFERENCE MAN

Daily Water Intake $=2.2$ liters / day
Breathing Rate $=2$ E4 ml/min

There are approximately 10^{13} cells in the human body.

There are 140 g of potassium in standard man, 125 nCi is K^{40} which results in $0.25 \mathrm{mrem} / \mathrm{wk}$ ($13 \mathrm{mrem} / \mathrm{yr}$) to the whole body. An additional $15 \mathrm{mrem} / \mathrm{yr}$ will occur when using a salt substitute.

RADIATION WEIGHTING FACTORS ${ }^{1}$ (ICRP 60)

Type and Energy Range ${ }^{2}$ Radiation	Radiation Weighting Factor, W_{R}
Photons, all energies	1
Electrons and muons, all energies ${ }^{3}$	1
Neutrons, <10 keV	5
10 keV to 100 kev	10
100 keV to 2 MeV	20
2 MeV to 20 MeV	10
$>20 \mathrm{MeV}$	5
Protons, other than recoil protons, energy $>2 \mathrm{MeV}$	2 MeV - 5
Alpha particles, fission fragments, heavy nuclei	$\text { aclei } 20$
All values relate to the radiation incident on the body or, for internal sources, emitted from the source.	
${ }^{2}$ The choice of values for other radiation is discussed in Annex A of Publication 60.	
${ }^{3}$ Excluding Auger electrons emitted from nuclei bound to DNA.	
ICRP 60 Tissue Weighting Factors	
Tissue or organ Tissue	Tissue weighting factor, W_{T}
Gonads	0.20
Bone marrow (red)	0.12
Colon	0.12
Lung	0.12
Stomach	0.12
Bladder	0.05
Breast	0.05
Liver	0.05
Oesophagus	0.05
Thyroid	0.05
Skin	0.01
Bone surface	0.01
Remainder	0.05

Page 26
CALCULATING TODE AND TEDE
TEDE $=\quad \mathrm{DDE}$
TODE $=\mathrm{DDE}$
total effective dose equivalent
total organ dose equivalent
deep dose equivalent
50 year committed dose equivalent to a tissue or organ
50 year committed effective dose equivalent

DOSE EQUIVALENT LIMITS \& POSTING REQUIREMENTS (10CFR20 \& 10CFR835)

Dose Equivalent
TEDE
TODE
LDE
SDE,WB
SDE, ME
TEDE (general public)

DOSE EQUIVALENT MEASUREMENT
Abbreviations from USNRC Reg. Guide 8.7
Measurement Depth for External Sources (cm) Density Thickness (mg / cm ${ }^{2}$)
TEDE
1
TODE $1 \quad 1000$
LDE 0.3
$\begin{array}{ll}\text { SDE, WB } & \\ & 0.007\end{array}$
SDE, ME^{2}
0.007

Annual Limit (rem)
5
50
15
50
50
0.1 300
7
7
${ }^{1}$ SDE, WB is the shallow dose equivalent to the skin of the whole body.
${ }^{2}$ SDE, ME the shallow dose equivalent to a major extremity.

EFFECTS OF RADIATION EXPOSURE

Gastro-Intestinal radiation syndrome: pathophysiology from gastro-intestinal syndrome is of greater consequence from exposure to neutron radiation fields than the hematopoetic syndrome.

Note: RBE (Gl syndrome, neutron rad) $=2.4$

The sooner the onset of vomiting and/or diarrhea the higher the expected dose.

γ, x-ray absorbed dose $\mathrm{LD}_{50}($ rad $)$	acute effects	approximate time to onset
$10,000-15,000$	neuro-vascular	hours
$500-1,200$	Gl	days
$250-500$	hematopoetic	weeks

Plutonium Exposure - Acute Effects
0.1 to $0.9 \mu \mathrm{Ci} / \mathrm{g} \mathrm{Pu}{ }^{239}$ in lung tissue caused acute-fatal effects in dogs 55 to 412 days postexposure. Lung doses were on the order of 4,000 to $14,000 \mathrm{rad}$.

Table of the Elements

Z\#	Element	Symbol	Z\#	Element	Symbol
89	Actinium	Ac	63	Europium	Eu
13	Aluminum	Al	100	Fermium	Fm
95	Americium	Am	9	Fluorine	F
51	Antimony	Sb	87	Francium	Fr
18	Argon	Ar	64	Gadolinium	Gd
33	Arsenic	As	31	Gallium	Ga
85	Astatine	At	32	Germanium	Ge
56	Barium	Ba	79	Gold	Au
97	Berkelium	Bk	72	Hafnium	Hf
4	Beryllium	Be	105	Hahnium	Ha
83	Bismuth	Bi	2	Helium	He
5	Boron	B	67	Holmium	Ho
35	Bromine	Br	1	Hydrogen	H
48	Cadmium	Cd	49	Indium	In
20	Calcium	Ca	53	lodine	1
98	Californium	Cf	77	Iridium	Ir
6	Carbon	C	26	Iron	Fe
58	Cerium	Ce	36	Krypton	Kr
55	Cesium	Cs	57	Lanthanum	La
17	Chlorine	Cl	103	Lawrencium	Lr
24	Chromium	Cr	82	Lead	Pb
27	Cobalt	Co	3	Lithium	Li
29	Copper	Cu	71	Lutetium	Lu
96	Curium	Cm	12	Magnesium	Mg
66	Dysprosium	Dy	25	Manganese	Mn
99	Einsteinium	Es	101	Mendelevium	Mv
68	Erbium	Er			

Page 29

Table of the Elements

Z\#	Element	Symbol	Z\#	Element	Symbol
80	Mercury	Hg	62	Samarium	Sm
42	Molybdenum	Mo	21	Scandium	Sc
60	Neodymium	Nd	106	Seaborgium	Sg
10	Neon	Ne	34	Selenium	Se
93	Neptunium	Np	14	Silicon	Si
28	Nickel	Ni	47	Silver	Ag
41	Niobium	Nb	11	Sodium	Na
7	Nitrogen	N	38	Strontium	Sr
102	Nobelium	No	16	Sulfur	S
76	Osmium	Os	73	Tantalum	Ta
8	Oxygen	O	43	Technetium	Tc
46	Palladium	Pd	52	Tellurium	Te
15	Phosphorus	P	65	Terbium	Tb
78	Platinum	Pt	81	Thallium	TI
94	Plutonium	Pu	90	Thorium	Th
84	Polonium	Po	69	Thulium	Tm
19	Potassium	K	50	Tin	Sn
59	Praseodymium	Pr	22	Titanium	Ti
61	Promethium	Pm	74	Tungsten	W
91	Protactinium	Pa	92	Uranium	U
88	Radium	Ra	23	Vanadium	V
86	Radon	Rn	54	Xenon	Xe
75	Rhenium	Re	70	Ytterbium	Yb
45	Rhodium	Rh	39	Yttrium	Y
37	Rubidium	Rb	30	Zinc	Zn
44	Ruthenium	Ru	40	Zirconium	Zr
104	Rutherfordium	Rf			

Use this chart along with the Table of the Elements to determine the progeny (and ancestor) of an isotope.

For example; we know Pu-238 is an alpha emitter. The alpha decay mode tells us the mass \# decreases by 4 (238 goes to 234) and the Z \# decreases by two (94 goes to 92). The element with a Z \# of 92 is Uranium. Pu-238 decays to U-234.

As another example; we know $\mathrm{Cl}-36$ is a beta emitter. The beta decay mode tells us the mass \# stays the same and the Z \# increases by one (16 goes to 17). The element with a Z \# of 17 is Argon. Cl-36 decays to Ar-36.

RADIOACTIVITY

$\begin{array}{rlll}{ }_{z} \mathrm{X}^{\mathrm{A}} & \mathrm{Z} & = & \text { atomic \# (number of protons) } \\ \mathrm{X} & =\text { element } \\ \mathrm{A} & = & \text { mass \# (number of protons and neutrons) }\end{array}$

Decay Modes

Alpha
Beta Minus
Beta Plus (Positron)
Electron Capture

$$
\begin{array}{lll}
z X^{A} & \rightarrow & { }^{z-2} X^{A-4}+\alpha \\
z^{A} & \rightarrow & z+1 X^{A}+\beta^{-} \\
z X^{A} & \rightarrow & z-1 X^{A}+\beta^{+} \\
z X^{A} & \rightarrow & z-1 X^{A}
\end{array}
$$

Radioactive Decay Equation is; $\quad A_{t}=A_{0} e^{-\lambda t}$
Where; $\quad A_{t}$ is the activity at the end of time ' t '
A_{0} is the activity at the beginning
λ is 0.693 divided by the half-life
t is the decay time

REPORTING RADIOLOGICAL DATA

For Minimum Detectable

Activity (MDA)		$\mathrm{MDA}=\underline{k}^{2}+2 k \sqrt{ } \overline{R_{\underline{B}} \times \underline{t_{\underline{S}+\underline{B}}} \underline{X E f f} \times\left(1+t_{\underline{S}+\underline{B}} / t_{\underline{B}}\right)}$
k (for 95\%)	=	1.645
$t_{\text {S }}{ }^{\text {B }}$	=	sample
t_{B}	=	backgr
R_{B}	=	backgr
Eff	=	efficien
$\mathrm{R}_{\mathrm{S}+\mathrm{B}}$	=	sample

MDA when background and sample count times are one minute and background is displayed in DPM.

$$
\mathrm{MDA}=\frac{2.71+4.65 \sqrt{ } \overline{R_{B} \times E f f}}{E f f}
$$

MDA when background count time is ten minutes and sample count time is one minute and background is displayed in DPM.

$$
\mathrm{MDA}=\frac{2.71+3.45 \sqrt{ } \overline{R_{\underline{B}} \underline{X E f f}}}{E f f}
$$

MDA when background and sample count times are one minute and background is displayed in CPM.

$$
M D A=\frac{2.71+4.65 \sqrt{ } \overline{R_{B}}}{E f f}
$$

MDA when background count time is ten minutes and sample count time is one minute and background is displayed in CPM.

Surface Contamination Correction Factors for Probe Area

The contamination reporting requirements in 10CFR835 call for survey results to be stated as $\mathrm{dpm} / 100 \mathrm{~cm}^{2}$ or as dpm per surface area for items or spots smaller than $100 \mathrm{~cm}^{2}$.

Detector surface areas may be; 1) smaller than $100 \mathrm{~cm}^{2}$, 2) exactly $100 \mathrm{~cm}^{2}$, or 3) larger than $100 \mathrm{~cm}^{2}$. Areas of contamination may be smaller than $100 \mathrm{~cm}^{2}$, or exactly $100 \mathrm{~cm}^{2}$, or larger than $100 \mathrm{~cm}^{2}$. Use the following matrix to determine how to perform the probe surface area and contamination surface area correction factors.

1) Detector surface area smaller than $100 \mathrm{~cm}^{2}$
A. For a probe with a surface area smaller than $100 \mathrm{~cm}^{2}$, no correction factor is needed for areas of contamination equal to the probe surface area (report the contamination as dpm per the probe surface area).

DPM/probe $\mathrm{cm}^{2}=\quad$ Indicated DPM
B. If the item or spot of contamination is smaller than the probe surface area, then report the contamination as the measured dpm per that surface area.

DPM/spot $\mathrm{cm}^{2} \quad=\quad$ Indicated DPM
spot surface area
C. If the item or spot of contamination is equal to or greater than $100 \mathrm{~cm}^{2}$, then correct the measured dpm for probe surface area vs $100 \mathrm{~cm}^{2}$ and report the contamination as the corrected dpm per $100 \mathrm{~cm}^{2}$.

DPM $/ 100 \mathrm{~cm}^{2}=$ Indicated $D P M \times \frac{100 \mathrm{~cm}^{2}}{\text { detector surface area }}$
D. If the item or spot of contamination is larger than the probe surface area, but smaller than $100 \mathrm{~cm}^{2}$, then average the contamination over the surface area and report the contamination as the summed measured dpm per that surface area.
$D P M /$ spot $\mathrm{cm}^{2}=$ Average $D P M x \frac{\text { Spot Surface Area }}{\text { Detector Surface Area }}$

Surface Contamination Correction Factors for Probe Area

2) Detector surface area exactly $100 \mathrm{~cm}^{2}$
A. For a probe with a surface area of $100 \mathrm{~cm}^{2}$, no correction factor is needed for areas of contamination equal to or larger than $100 \mathrm{~cm}^{2}$.

$$
D P M / 100 \mathrm{~cm}^{2} \quad=\quad \text { Indicated } D P M
$$

B. If the item or spot of contamination is smaller than $100 \mathrm{~cm}^{2}$, then report the contamination as the measured dpm per that surface area.

$$
\text { DPM/spot } \mathrm{cm}^{2}=\frac{\text { Indicated } D P M}{\text { spot surface area }}
$$

3) Detector surface area larger than $100 \mathrm{~cm}^{2}$
A. For a probe with a surface area greater than $100 \mathrm{~cm}^{2}$, no correction factor is needed for areas of contamination of exactly $100 \mathrm{~cm}^{2}$.

DPM $/ 100 \mathrm{~cm}^{2} \quad=\quad$ Indicated $D P M$
B. If the item or spot of contamination is smaller than $100 \mathrm{~cm}^{2}$, then report the contamination as the measured dpm per that surface area.

$$
D P M / \text { spot } \mathrm{cm}^{2}=\frac{\text { Indicated DPM }}{\text { spot surface area }}
$$

C. If the item or spot of contamination is greater than $100 \mathrm{~cm}^{2}$, then correct the measured dpm for probe surface area as $100 \mathrm{~cm}^{2}$ and report the contamination as the corrected dpm per $100 \mathrm{~cm}^{2}$.

DPM $/ 100 \mathrm{~cm}^{2}=$ Indicated $D P M$
x
$100 \mathrm{~cm}^{2}$
Detector Surface Area

Page 35

Detector Efficiency

Calculate the efficiency of a detector as follows.
Efficiency = CPM / DPM

Alpha to Beta Crosstalk

Alpha to beta crosstalk is that portion of counts from alpha particles that are detected as beta particles by a detector. It is usually expressed as a percentage.

Using an alpha source;
α to β crosstalk \quad counts detected as beta particles
counts detected as alpha particles
Multiply by 100 to express the crosstalk as percent.

Beta to Alpha Crosstalk

Beta to alpha crosstalk is that portion of counts from beta particles that are detected as alpha particles by a detector. It is usually expressed as a percentage.

Using an alpha source;
β to α crosstalk $\quad=\quad$ counts detected as alpha particles
counts detected as beta particles
Multiply by 100 to express the crosstalk as percent.

Correction Factor for Alpha and Beta Energy vs Efficiency

If you are surveying for an isotope whose energy is different than what the instrument was calibrated with, then use a calibrated source with an energy similar to that being surveyed for;
CF (Correction Factor) = Calibrated Source DPM
DPM indicated by instrument
Multiply your instrument indication by the calculated CF.

Inverse Square Law Calculation

The inverse square law provides a simple way to calculate the exposure from a point gamma source at different distances.

Exposure Rate ${ }_{1} \times D_{1}{ }^{2}=$ Exposure Rate $_{2} \times D_{2}{ }^{2}$
where;
Exposure Rate $_{1}=$ Measured (or known) exposure rate
$D_{1}{ }^{2} \quad=\quad$ Distance from source for the measured or known exposure rate
Exposure Rate ${ }_{2}=$ Exposure rate to be calculated
$D_{2}{ }^{2} \quad=\quad$ New distance from the source

Shallow Dose Correction Factor

In accordance with 10CFR835 deep dose equivalent will be used for posting. Shallow dose equivalent will be reported separate from deep dose equivalent. Deep dose equivalent is the sum of the gamma and neutron deep dose equivalents. Shallow dose includes low-energy photons and beta particles. Alpha particles are not included in shallow dose.

The need to report a shallow dose for a survey is determined by this equation;
If the Open Window Reading divided by the Closed Window Reading is equal to or greater than 1.2, then perform a shallow dose survey.

Calculate the shallow dose rate using this equation;
(Open Window Reading - Closed Window Reading) x Correction Factor

Stay Time Calculation

Stay-time calculations are typically used to determine how long an individual can remain in an area with elevated radiation fields until they reach some pre-determined dose limit.

Example: Stay-time $=100 \mathrm{mR} / 25 \mathrm{mR} / \mathrm{hr}=4$ hours

Calculating Exposure Rate in an Air-Filled Ionization Chamber

$X \quad=\quad \mathrm{I} / \mathrm{m}[1 /(2.58 \mathrm{E}-4 \mathrm{C} / \mathrm{kg}-\mathrm{R})]$
$X \quad=\quad$ exposure rate $R / s e c$)
I = current (amperes)
$\mathrm{m}=$ mass of air in chamber (kg)
Note: 1 ampere = 1 Coulomb / second

Calculating Percent Resolution of a Gamma Spectroscopy Detector

$\% R=$ FWHM / peak energy $\times 100=$ percent resolution
where;
FWHM $\quad=\quad$ peak width at full width half-max peak height (keV)
peak energy $=\quad$ photopeak energy of interest (keV)

Calculating True Count Rate Based on Resolving Time of a Gas-Filled Detector

$$
\mathrm{R}_{\mathrm{C}}=\mathrm{R}_{0} /\left(1-\mathrm{R}_{0} \mathrm{Y}\right)
$$

where;
$R_{C}=\quad$ true count rate
$\mathrm{R}_{0} \quad=\quad$ observed count rate
$\mathrm{Y}=$ resolving time

CALCULATING SPECIFIC GAMMA-RAY CONSTANT (Г) FOR SOURCE ACTIVITY (A)

$\Gamma \quad=\quad \varphi E \gamma\left(\mu_{\mathrm{en}} / \rho\right)_{\mathrm{air}} \mathrm{e} / \mathrm{W}$
where;
$\Gamma \quad=\quad$ specific gamma constant $\left(\mathrm{R}-\mathrm{cm}^{2} / \mathrm{hr}-\mathrm{A}\right)$
$\varphi=$ photon fluence rate $\left(\gamma / \mathrm{cm}^{2}\right.$-hr)
$\mathrm{E} \gamma \quad=\quad$ gamma photon energy (MeV)
$\left(\mu_{\mathrm{en}} / \rho\right)=$ density thickness of air $\left(\mathrm{g} / \mathrm{cm}^{2}\right)$
e $\quad=\quad$ electron charge (Coulombs)
$\mathrm{W} \quad=\quad$ average amount of energy to produce an ion pair in air (eV)

CALCULATING PHOTON FLUENCE RATE (φ) FROM A POINT SOURCE

φ

$$
=\quad \mathrm{AY} / 4 \pi \mathrm{r}^{2}
$$

where;
$\varphi \quad=\quad$ photon fluence rate $\left(\gamma / \mathrm{cm}^{2}-\mathrm{hr}\right)$
A $\quad=\quad$ source activity (decay per hr)
Y $\quad=\quad$ photon yield $(\gamma /$ decay $)$
$r \quad=\quad$ distance from point source (cm)

CALCULATING EXPOSURE RATE (X) FROM A POINT SOURCE

$X(R / h r)=\Gamma A / r^{2}$
where;
$\Gamma \quad=\quad$ specific gamma ray constant $(\mathrm{R} / \mathrm{hr}$ @ 1 meter per Ci$)$
A $=$ activity of source in curies
$r \quad=\quad$ distance from source in meters

CALCULATING DOSE RATE TO AIR (D) FROM A POINT BETA SOURCE
 $D \quad=\quad 300 \mathrm{~A} / \mathrm{d}^{2}$

where;
D = dose rate (rad / hr)
A $=$ source activity in curies
d $=$ distance from source in feet

CALCULATING EXPOSURE RATE (X) FROM A LINE SOURCE

Inside L / 2:	$X_{1}\left(d_{1}\right)$	$=$	$X_{2}\left(d_{2}\right)$
Outside L / 2:	$X_{1}\left(d_{1}\right)^{2}$	$=$	$X_{2}\left(d_{2}\right)^{2}$

where; $d_{1}=$ distance from source at location 1
$\mathrm{d}_{2}=$ distance from source at location 2
$\mathrm{L}=$ length of line
Note that outside of $\mathrm{L} / 2$ the equation is the same as the inverse square law.
OR
$X(R / h r) \quad=\quad \Gamma A_{L} / R x \tan ^{-1}(L / R)$
where;
$\Gamma \quad=\quad \mathrm{R} / \mathrm{hr}$ @ 1 meter per Ci
$A_{L} \quad=\quad$ activity per unit length (curies per meter)
$R \quad=\quad$ distance from line in meters
$\mathrm{L} \quad=\quad$ length of line in meters

CALCULATING EXPOSURE RATE (X) FROM A DISK SOURCE
$X(R / h r) \quad=\quad \pi A_{a} \Gamma \times \ln \left[\left(L^{2}+R^{2}\right) / R^{2}\right]$
where;
$\Gamma \quad=\quad \mathrm{R} / \mathrm{hr} @ 1$ meter per Ci
$\mathrm{A}_{a} \quad=\quad$ activity per unit area (curies per sq. cm)
$\mathrm{L} \quad=\quad$ diameter of source surface in centimeters
$\mathrm{R}=$ distance from source surface in centimeters

6CEN

The 6CEN equation can be used to calculate the exposure rate in R / hr at one foot for x -ray and gamma radiation point sources with energies between 70 KeV and 2 MeV .
$R / h r$ at 1 foot $=6$ CEN
where;
C $\quad=\quad$ curies of radioactive material
E $\quad=\quad$ photon energy in MeV
$\mathrm{N} \quad=\quad$ abundance of that photon (expressed as a decimal)

Calculating Airborne Radioactivity (long-lived)

$\mathrm{C}_{\mathrm{S}}=\mathrm{R}_{\mathrm{N}} /(\mathrm{V} \times \varepsilon \times \mathrm{SA} \times \mathrm{CE} \times \mathrm{CF})$
where; $\quad C_{s}=\quad$ activity concentration at end of sample run time
$\mathrm{R}_{\mathrm{N}}=$ net counting rate
$\mathrm{V}=$ sample volume
$\varepsilon \quad=\quad$ detector efficiency
SA = self-absorption factor
CE = collection efficiency
CF = conversion from disintegrations per unit time to activity

Calculating Airborne Radioactivity (short-lived)
$\mathrm{C}_{\mathrm{s}}=\mathrm{R}_{\mathrm{N}} /\left[\mathrm{V} \times \varepsilon \times \mathrm{SA} \times \mathrm{CE} \times \mathrm{CF} \times\left(1-\mathrm{e}^{-\lambda \mathrm{ts}}\right) \times\left(\mathrm{e}^{-\lambda t \mathrm{~d}}\right)\right.$
where;
$t_{s}=$ sample count time
$t_{d} \quad=\quad$ time elapsed between end of sample run time and start of sample count time

RESPIRATORY PROTECTION FACTORS (PF) 10CFR20

Device	Mode	Particulates	Vapors	PF
Air-purifying half-mask	D	Y	N	10
Air-purifying full-face	D	Y	N	50
Air-purifying full-face	PP	Y	N	1000
Supplied-air hood	PP	Y	Y	1000^{*}
Supplied-air full-face	PP	Y	Y	2000
SCBA	D	Y	N	50
SCBA	PD	Y	Y	10,000

* 2000 for supplied-air hood if run at max flow rate with calibrated flow gauge.

Lung Deposition from ICRP 30

AMAD (μ)	NP (Naso-pharanx)	TB (Trachea-bronchus)	P (Lungs) Pulmonary
0.1	0.01	0.08	0.61
1	0.3	0.08	0.25
10	0.9	0.08	0.04

Air Monitoring

Concentration

Concentration is activity per volume of air and may be stated as dpm / cubic meter, $\mu \mathrm{Ci} / \mathrm{ml}$, or $\mathrm{Bq} /$ cubic meter. DAC (Derived Air Concentration) is another way to express airborne radioactivity concentrations as relative hazards.

DPM	=	Sample CPM
		Eff (CPM / DPM)
$\mu \mathrm{Ci}$	=	2.22 E6 DPM
1 DPM / M ${ }^{\beta}$	=	4.5 $\mathrm{E}-13 \mu \mathrm{Ci} / \mathrm{ml}$
$1 \mu \mathrm{Ci} / \mathrm{ml}$	=	2.22 E12 DPM / M ${ }^{3}$
Becquerel (Bq)	=	DPS
DPM / M ${ }^{\beta}$	=	CPM
		Eff (CPM / DPM) x total sample volume in M^{3}
$\mu \mathrm{Ci} / \mathrm{ml}$	=	CPM
		Eff \times 2.22 E6 DPM / $\mu \mathrm{Ci} \times$ total sample volume in ml
$\mathrm{Bq} / \mathrm{M}^{3}$	=	CPM
		Eff $\times 60 \mathrm{DPM} / \mathrm{Bq} \times$ total sample volume in M^{3}
DAC	$=$	$\mu \mathrm{Ci} / \mathrm{ml}$
		$\mu \mathrm{Ci} / \mathrm{ml}$ per DAC (DAC Factor)

CONCENTRATION, DAC, AND DAC-HR

To calculate concentration you need the CPM (or DPM) and the total air sample volume.

1. Divide the CPM by the efficiency (expressed as a decimal) to get DPM.
2. Divide the DPM by 2.22 E6 DPM / $\mu \mathrm{Ci}$ to get $\mu \mathrm{Ci}$.
3. Multiply the air sampling rate by the sampling time to get the total air sample volume.
A. For a FAS running for 1 week the total air sample volume is 168 hours times 2 CFM (cubic feet per minute).
B. Multiply 168 hours times 60 minutes per hour times 2 CFM. This equals 20,160 cubic feet.
C. Multiply the 20,160 cubic feet by $28,316 \mathrm{ml} /$ cubic foot to get the total milliliters. This equals 5.7 E8 milliliters.
D. Use a similar set of calculations for a Giraffe covering a job for a short period of time, obviously it would not be sampling for a full week, so the sample time might be 2 or 4 hours.
4. Divide the $\mu \mathrm{Ci}$ by the sample volume to get concentration in $\mu \mathrm{Ci} / \mathrm{ml}$.
5. Divide the $\mu \mathrm{Ci} / \mathrm{ml}$ by the DAC factor from 10CFR835 to get the concentration in numbers of DACs.
6. Multiply the numbers of DACs by the exposure time (how long a worker was in the area in hours) to get the DAC-HRs.

Example Calculations for Airborne Radioactivity

A Giraffe sampled the working area for 2 hours, sampling at 2 CFM. At the end of the job you sent the filter to the count lab and they identified 36 DPM of Pu^{239}. What was the concentration in $\mu \mathrm{Ci} / \mathrm{ml}$, DPM / M ${ }^{3}$, and DACs, and what are the DAC-HRs?

1. We divide the DPM from the count lab by 2.22 E6 DPM / $\mu \mathrm{Ci}$ to get $\mu \mathrm{Ci}$.

36 DPM / 2.22 E6 DPM / $\mu \mathrm{Ci}=1.6 \mathrm{E}-5 \mu \mathrm{Ci}$
2. Multiply the air sampling rate by the sampling time to get the total air sample volume.
A. The Giraffe ran for 2 hours at 2 CFM. Multiply 2 hours times 60 minutes per hour times 2 CFM.

2 hours x $\mathbf{6 0} \mathbf{~ m i n} / \mathbf{h r} \mathbf{x} \mathbf{2}$ CFM = $\mathbf{2 4 0}$ cubic feet

B. Multiply the 240 cubic feet by $28,316 \mathrm{ml} /$ cubic foot to get the total milliliters.
$\mathbf{2 4 0}$ cubic feet $\mathbf{x} \mathbf{2 8 , 3 1 6 ~ \mathbf { ~ m l } / \text { cubic foot } = 6 . 8 \mathrm { E } 6 \mathbf { ~ m l }}$
C. Or, multiply the 240 cubic feet (CF) by 0.028316 cubic meters / cubic foot to get the total cubic meters $\left(\mathrm{M}^{3}\right)$.
240 cubic feet $\mathbf{x} 0.028316 \mathrm{M}^{\mathbf{3}} / \mathrm{CF}=6.8 \mathrm{M}^{\mathbf{3}}$
3. Divide the $\mu \mathrm{Ci}$ by the sample volume to get concentration in $\mu \mathrm{Ci} / \mathrm{ml}$.
$1.6 \mathrm{E}-5 \mu \mathrm{Ci} / 6.8 \mathrm{E} 6 \mathrm{ml}=2.4 \mathrm{E}-12 \mu \mathrm{Ci} / \mathrm{ml}$
4. Or, divide the DPM by the sample volume in M^{3} to get DPM / M^{3}.

36 DPM $/ 6.8 M^{3}=5.3$ DPM $/$ M 3
5. Divide the $\mu \mathrm{Ci} / \mathrm{ml}$ by the DAC factor from 10CFR835 to get the concentration in numbers of DACs.

$2.4 \mathrm{E}-12 \mu \mathrm{Ci} / \mathrm{ml}$ divided by $2 \mathrm{E}-12 \mu \mathrm{Ci} / \mathrm{ml}$ per DAC $=1.2$ DAC

6. Multiply the numbers of DACs by the exposure time (how long a worker was in the area in hours) to get the DAC-HRs.
1.2 DAC times 2 hours = 2.4 DAC-HRs

SURFACE AREA CALCULATIONS

Triangle A (area) $=1 / 2 \times b \times h$;
where b is the base and h is the height of the triangle (you don't need to know the length of the sides, just the base and the height)

Rectangle A (area) $=\mathrm{a} \times \mathrm{b}$;
where a and b are the lengths of the sides

Parallelogram (a 4-sided figure with opposite sides parallel)

$$
\mathrm{A} \text { (area) } \quad=\quad \mathrm{a} \times \mathrm{h} ; \text { or } \mathrm{a} \times \mathrm{b} \times \sin \theta ;
$$

where a and b are the length of the sides, h is the altitude (or vertical height), and θ is the angle between the sides

Trapezoid (a 4-sided figure with two sides parallel)

$$
A \text { (area) } \quad=\quad 1 / 2 \times h(a+b) ;
$$

where a and b are the length of the sides and h is the altitude

Regular polygon of \boldsymbol{n} sides

$$
\mathrm{A} \text { (area) } \quad=\quad 1 / 4 \times n \times \mathrm{a}^{2} \times \text { cotangent }\left(180^{\circ} / n\right) ;
$$

where a is the length of a side and n is the number of sides

Circle A (area) $=\pi \times r^{2}$; or $1 / 4 \times \pi \times d^{2}$;
where r is the radius and d is the diameter

Cube A (area) $=6 \times \mathrm{a}^{2}$;
where a is the length of a side

Cylinder A (area) $=2 \times \pi \times r \times h$;
where r is the radius and h is the length of the height

Sphere \quad A (area) $=4 \times \pi \times r^{2}$; or $\pi \times d^{2}$;
where r is the radius and d is the diameter

VOLUME CALCULATIONS

Cube V (volume) = a^{3};
where a is the length of a side

Box V (volume) $=\quad \mathrm{wxIxh}$;
where w is the width, I is the length, and h is the height

Cylinder V (volume) $=\pi \times r^{2} \times h$;
where r is the radius and h is the length of the height

Sphere $\quad V$ (volume) $=4 / 3 \times \pi \times r^{3}$;
where r is the radius
or $\quad V$ (volume) $=1 / 6 \times \pi \times d^{3}$;
where d is the diameter

Conversions

1 ml (milliliter)	$=$	$1 \mathrm{cc}\left(\right.$ cubic centimeter or $\left.\mathrm{cm}^{3}\right)$
1000 ml	$=$	1 liter
1000 liters	$=$	1 cubic meter $\left(\mathrm{M}^{3}\right)$
1 cubic foot (CF)	$=$	28.316 liters or $0.028316 \mathrm{M}^{3}$
$1 \mathrm{M}^{3}$	$=$	35.315 CF

GAMMA AND NEUTRON HALF-VALUE LAYERS

Half-Value Layers in cm for Varying Photon Energies for Various Materials			
	10 to 100 KeV	100 to 500 KeV	1 MeV
Concrete	6.56	10.83	12.05
Lead	0.03	0.50	1.31
DU	0.02	0.22	0.65
Tungsten	0.02	0.38	0.87
Steel / Iron	0.36	2.73	3.45
Tin	0.08	1.92	3.27
Aluminum	0.44	9.78	10.94
Water	23.83	26.15	28.71
	1 to 1.5 MeV	1.5 to 2 MeV	
	13.64	14.41	$>2 \mathrm{MeV}$
Concrete	1.88	2.12	19.65
Lead	0.98	1.12	2.62
DU	1.15	1.39	1.17
Tungsten	3.78	4.10	1.62
Steel / Iron	3.68	4.17	4.41
Tin	12.32	13.13	4.88
Aluminum	31.07	31.88	17.50
Water			57.75

These numbers were generated using NIST mass attenuation coefficients. Buildup is included.

HVL in centimeters for fast neutrons

Energy in MeV	1	5	10	15
Polyethylene	3.7	6.1	7.7	8.8
Water	4.3	6.9	8.8	10.1
Concrete	6.8	11	14	16
Damp soil	8.8	14.3	18.2	20.8

SHIELDING CALCULATIONS

CALCULATING NEUTRON SHIELD THICKNESSES

I	$=I_{0} \mathrm{e}^{-\sigma N x}$
where; I	$=$ final neutron flux rate
I_{0}	$=$ initial neutron flux rate
σ	$=$ shield cross section in square centimeters
N	$=$ number of atoms per cm^{3} in the shield
x	$=$ shield thickness in centimeters

CALCULATING GAMMA SHIELD THICKNESSES

"Good Geometry" (narrow beam)
$1=l_{0} e^{-\mu x}$
I = shielded exposure rate
$\mathrm{I}_{0} \quad=\quad$ unshielded exposure rate
$\mu=\quad$ linear attenuation coefficient
$x \quad=\quad$ shield thickness
"Poor Geometry" (broad beam)
$\mathrm{I}=\mathrm{B} \times \mathrm{I}_{0} \mathrm{e}^{-\mu \mathrm{x}} \quad$ OR $\quad \mathrm{l}_{0} \mathrm{e}^{-\mu \ln x}$
$\mathrm{B}=$ buildup factor
$\mu \mathrm{en}=\quad$ linear energy absorption coefficient
Half-Value Layer (HVL) $\quad=\quad \ln 2 / \mu$
Tenth-Value Layer (TVL) = $\ln 10 / \mu$
Transmission Factor (F) $=1 / I_{0}$ OR $F=e^{-\mu x}$

BETA SHIELDING

Bremsstrahlung Fraction:

$$
\begin{array}{ll}
\mathrm{f} & =3.5(\text { low } \mathrm{Z}) \text { or } 5(\text { high } \mathrm{Z}) \times 10^{-4} \mathrm{ZE}_{\max } \\
\text { Activity }_{\text {gamma }} & =\mathrm{f} \times \text { Activity }_{\text {beta }}
\end{array}
$$

Gamma Shielding

How to use the graph.

Given: A Co ${ }^{60}$ source reading $120 \mathrm{mrem} / \mathrm{hr}$ at 30 cm
Find: the number of half-value layers to reduce the exposure rate to $5 \mathrm{mrem} / \mathrm{hr}$ at 30 cm

Divide $5 \mathrm{mrem} / \mathrm{hr}$ by $120 \mathrm{mrem} / \mathrm{hr}=0.042$

Locate 0.042 on the vertical axis and move across to where the slanted line crosses 0.042 , then move vertically down to the "Number of Half-Value Layers" horizontal axis, this value is approximately 4.6

Pick a shielding material from page 47 and multiply the number of half-value layers by the cm thickness in the shielding table to obtain the thickness required.

Neutron Shielding

How to use the graph.
Given: A 5 MeV neutron source reading $12,000 \mathrm{n} / \mathrm{cm}^{2}-\mathrm{sec}$ at 30 cm
Find: the number of half-value layers to reduce the flux rate to $200 \mathrm{n} / \mathrm{cm}^{2}-\mathrm{sec}$ at 30 cm

Divide $200 \mathrm{n} / \mathrm{cm}^{2}-\sec$ by $12,000 \mathrm{n} / \mathrm{cm}^{2}-\sec =0.0167$

Locate 0.0167 on the vertical axis and move across to where the slanted line crosses 0.0167 , then move vertically down to the "Number of Half-Value Layers" horizontal axis, this value is approximately 5.9

Pick a shielding material from page 47 and multiply the number of half-value layers by the cm thickness in the shielding table to obtain the thickness required.

Page 50

Shielding Materials

α
β
γ
mixed β^{-} / γ
neutron hydrogenous material to thermalize (such as polyethylene) then neutron absorber (such as Cd, B, Li, Hf), then high Z to absorb "capture gammas"

CALCULATING TRANSMISSION FACTOR (F) FOR SHIELDING AN X-RAY DEVICE

$\mathrm{F} \quad=\quad \mathrm{Pd}^{2} / \mathrm{WUT}$ (BCF)
$\mathrm{P} \quad=\quad$ permissible dose rate (mrem/wk)
$\mathrm{d} \quad=$ distance to point of interest
$\mathrm{W} \quad=\quad$ workload (mA-min / wk)
$\mathrm{U}=$ use factor
$\mathrm{T}=$ occupancy factor
$\mathrm{BCF}=$ beam conversion factor $\mathrm{R} / \mathrm{mA}-\mathrm{m}^{2}$)

Snow (fresh)	0.2
Wood (cedar)	0.4
Wood (pine)	0.5
Wood (oak)	0.7
Paper	0.9
Polyethylene	0.9
Water	1.0
Rubber	1.1
Linoleum	1.2
Polycarbonate	1.2
PVC	1.3
Earth (packed)	1.5
Sandstone	2.2
Concrete	2.4
Aluminum	2.6
Glass	2.6
Granite	2.7
Limestone	2.7
Marble	2.7
Titanium	3.5
Iron	7.8
Steel	7.8
Bronze	8.2
Brass	8.4
Copper	8.8
Lead	11.4
Tungsten	19.6

Radioactive Decay Equation is; $\quad A_{t}=A_{0} e^{-\lambda t}$

Example of how to use this graph.
Given: $\quad 10 \mathrm{mCi}$ of P^{32} with a half-life of 14.3 days
Find: the activity remaining after 125 days

Determine the number of half-lives during the decay by dividing 125 by $14.3=8.74$

Locate 8.74 on the horizontal axis and move up to where the radioactive decay line crosses
8.74 , then move horizontally to the "Fraction of Activity Remaining" vertical axis, this value is approximately 0.002

Multiply the original activity, 10 mCi , by 0.002 ; the activity remaining after 125 days is 0.02 mCi ($20 \mu \mathrm{Ci}$)

Example of how to use this graph.
Given: An unknown isotope
Find: the half-life of the isotope

Perform an initial net sample count, then recount the sample at regular intervals, perhaps every 10 minutes for a short-lived isotope.

Plot the sample counts on the vertical axis.

Draw a line connecting the sample counts. It should be a straight line, if it is not then it may be due to counting errors.

Find where the line crosses half the initial count and then go down to the horizontal axis, this is the half-life.

Table 1 of DOE 5400.5 and Appendix A of the LANL RPP

Surface Activity Guidelines

Allowable Total Residual Surface Contamination (dpm/100 cm^{2})

Radionuclides	Average	Maximum	Removable
Group 1: Transuranics, ${ }^{125} \mathrm{I},{ }^{129} \mathrm{I},{ }^{227} \mathrm{Ac},{ }^{226} \mathrm{Ra}$, ${ }^{228} \mathrm{Ra},{ }^{228} \mathrm{Th},{ }^{230} \mathrm{Th},{ }^{231} \mathrm{~Pa}$	100	300	20
Group 2: Th-natural, ${ }^{90} \mathrm{Sr},{ }^{126} \mathrm{I},{ }^{131} \mathrm{I},{ }^{133} \mathrm{I},{ }^{223} \mathrm{Ra}$, ${ }^{224} \mathrm{Ra},{ }^{232} \mathrm{U},{ }^{232} \mathrm{Th}$	1,000	3,000	200
Group 3: U-natural, ${ }^{235} \mathrm{U},{ }^{238} \mathrm{U}$, and associated decay products, alpha emitters	5,000	15,000	1,000
Group 4: Beta/gamma emitters (radionuclides with decay modes other than alpha emission or spontaneous fission) except ${ }^{90} \mathrm{Sr}$ and others noted above	5,000	15,000	1,000
Tritium (applicable to surface and subsurface)	N/A	N/A	10,000

Appendix D of 10CFR835

Nuclide	Removable	Total (fixed + removable)
Natural U, ${ }^{235} \mathrm{U},{ }^{238} \mathrm{U}$, and associated decay Products	1,000 alpha $\mathrm{dpm} / 100 \mathrm{~cm}^{2}$	5,000 alpha $\mathrm{dpm} / 100 \mathrm{~cm}^{2}$
Transuranics, ${ }^{226} \mathrm{Ra},{ }^{228} \mathrm{Ra},{ }^{230} \mathrm{Th},{ }^{228} \mathrm{Th},{ }^{231} \mathrm{~Pa}$, ${ }^{227} \mathrm{Ac},{ }^{125}$ I, ${ }^{129}$ \|	$20 \mathrm{dpm} / 100 \mathrm{~cm}^{2}$	$500 \mathrm{dpm} / 100 \mathrm{~cm}^{2}$
Natural Th, ${ }^{232} \mathrm{Th},{ }^{90} \mathrm{Sr},{ }^{223} \mathrm{Ra},{ }^{224} \mathrm{Ra},{ }^{232} \mathrm{U},{ }^{126} \mathrm{I}$, ${ }^{131}$ I, ${ }^{133}$ \|	$200 \mathrm{dpm} / 100 \mathrm{~cm}^{2}$	$1,000 \mathrm{dpm} / 100 \mathrm{~cm}^{2}$
Beta/gamma emitters (nuclides with decay modes other than alpha emission or spontaneous fission) except ${ }^{90} \mathrm{Sr}$ and others noted above	1,000 beta/gamma $\mathrm{dpm} / 100 \mathrm{~cm}^{2}$	5,000 beta/gamma $\mathrm{dpm} / 100 \mathrm{~cm}^{2}$
Tritium organic compounds, surfaces contaminated by HT, HTO, and metal tritide aerosols	$\begin{aligned} & 10,000 \\ & \mathrm{dpm} / 100 \mathrm{~cm}^{2} \end{aligned}$	$\begin{aligned} & 10,000 \\ & \mathrm{dpm} / 100 \mathrm{~cm}^{2} \end{aligned}$

POSTING

Radiological Controlled Area (RCA)

Note: For areas where the potential exists for both internal dose and external dose, area designation must consider the total effective dose equivalent (TEDE).

RCA for external radiation - An individual is not expected to receive more than 0.1 rem during a year from external radiation.

RCA for contamination - A reasonable potential exists for contamination to occur at levels in excess of those specified in Appendix A,
or
An individual is not expected to receive more than 0.1 rem committed effective dose equivalent (CEDE) during a year from intakes.
RCA for DU shrapnel - DU exists as a result of explosive testing.
RCA for volume contamination - A reasonable potential exists for the presence of volumecontaminated materials that are not individually labeled.

Radiation Area

Any area where an individual could exceed a deep dose equivalent of 5 mrem in one hour at 30 cm from the source or the surface the radiation penetrates.

High Radiation Area

Any area where an individual could exceed a deep dose equivalent of 100 mrem in one hour at 30 cm from the source or the surface the radiation penetrates.

Very High Radiation Area

Any area where an individual could exceed a deep dose equivalent of 500 rad in one hour at 1 meter from the source or the surface the radiation penetrates.

POSTING

Contamination Area

Any area where removable contamination levels exceed or are likely to exceed those specified in Appendix A.

High Contamination Area

Any area where removable contamination levels exceed or are likely to exceed100 x those specified in Appendix A..

Airborne Radioactivity Area

Any area where airborne concentrations:

1) are > (or likely to exceed) the applicable DAC values, or
2) would result in an individual (without respiratory protection) being exposed to >12 DAChours in a week.

Radioactive Materials Area

Accessible areas where items or containers of radioactive materials in quantities exceeding the values provided in Appendix 4A are used, handled, or stored.

INSTRUMENT USE

1. Select an instrument and / or detector appropriate for the isotope(s) to be surveyed for.
2. Check instrument and detector for a valid calibration sticker and for damage that would prevent it (them) from operating acceptably.
3. Check the battery condition.
4. Perform an operational (or performance) check.
5. Determine the isotope(s) correction factor to be applied to the detector.
6. Calculate the instrument's MDA.
7. Compare the instrument's MDA to the survey criteria.
8. If the instrument or detector do not meet all of the above criteria, then replace the instrument or detector (or change/charge the batteries) or change your survey technique so that the instrument's MDA will meet the survey criteria.
9. Perform and document the survey.

INSTRUMENT SELECTION

Exposure/Absorbed Dose Rates (photon)Ion Chamber, Energy Compensated GM (above 40 keV), Tissue-Equivalent Plastic
Dose Equivalent Rates (neutron)
Boron Trifluoride Counter with polyethylene moderator, Neutron-Proton Recoil (Rossi
Detector, Liquid Plastic Scintillator, Plastic/ZnS Scintillator), LiGdBO_{3}-loaded Plastic

Beta/gamma activity

Proportional Counter, GM, Plastic Scintillator

Alpha activity

Proportional Counter, ZnS Scintillator, Air Proportional, Solid-state Silicon, Plastic Scintillator

Alpha + beta activity Proportional Counter, Plastic/ZnS Scintillator, Plastic Scintillator, Solid-state Silicon	
Gross gamma activity..........	Nal, CsI
X-ray spectroscopy	Si(Li)
Gamma spectroscopy..........	HPGe, CZT, Hgl, CsI
Alpha spectroscopy	Frisch Grid, Solid-state Silicon
Beta spectroscopy	

Page 60

DOT 49CFR173

Non-exclusive use (on package)

200 contact and 10 mrem / hr @ 1 m

Exclusive use (open transport)

200 contact and 10 mrem / hr @ 2 m from sides of vehicle, 2 mrem / hr in cab

Exclusive use (closed transport)

1,000 contact, 200 @ vehicle sides, \& 10 mrem / hr @ $2 \mathrm{~m}, 2 \mathrm{mrem} / \mathrm{hr}$ in cab

Label	Surface Radiation Level	TI
White I	$\leq 0.5 \mathrm{mrem} / \mathrm{hr}$	0
Yellow II	$0.5<\mathrm{RL} \leq 50 \mathrm{mrem} / \mathrm{hr}$	≤ 1.0
Yellow III	$>50 \mathrm{mrem} / \mathrm{hr}$	>1.0

Note: Packages are exempt from specification labeling if shipped Exclusive-Use LSA, or contain Limited Quantities of radioactive materials.

Removable External Radioactive Contamination - Wipe Limits

	Max Permissible Limits	
Contaminant	$\mu \mathrm{Ci} / \mathrm{cm}^{2}$	$\mathrm{dpm} / \mathrm{cm}^{2}$
Beta/gamma emitting radionuclides; all radionuclides with		
half-lives less than 10 days; natural uranium; natural thorium;	10^{-5}	22
$\mathrm{U}^{235} ; \mathrm{U}^{238} ; \mathrm{Th}^{228} ; \mathrm{Th}^{230}$ and Th^{232} when contained in ores or physical concentrates		
All other alpha-emitting radionuclides	10^{-6}	2.2

Activity Limits for Limited Quantities, Instruments \& Articles
 Instruments and Articles Materials
 Instrument \& Article Limits Package Limits
 Package Limits

Solids
Special form
Other forms
Liquids
Tritiated water

$<0.1 \mathrm{Ci} / \mathrm{L}$	-	-	1,000 curies
0.1 to $1.0 \mathrm{Ci} / \mathrm{L}$	-	-	100 curies
$>1.0 \mathrm{Ci} / \mathrm{L}$	-	-	1 curie
Other liquids	$10^{-3} \mathrm{~A}_{2}$	$10^{-1} \mathrm{~A}_{2}$	$10^{-4} \mathrm{~A}_{2}$

Gases

Tritium*
Special form
Other forms
$10^{-2} \mathrm{~A}_{1}$
$10^{-2} \mathrm{~A}_{2}$
$10^{3} \mathrm{~A}_{2}$

20 curies
$10^{-3} \mathrm{~A}_{1}$
$10^{-3} \mathrm{~A}_{2}$
A_{1}
A_{2}
$10^{-3} \mathrm{~A}_{1}$ $10^{-3} \mathrm{~A}_{2}$

* These tritium values also apply to tritium in activated luminous paint and tritium absorbed on solid carriers.

Examples of A_{1} and A_{2} Values

	$\mathrm{A}_{1} \mathrm{Ci}$	$\mathrm{A}_{2} \mathrm{Ci}$		$\mathrm{A}_{1} \mathrm{Ci}$	$\mathrm{A}_{2} \mathrm{Ci}$
C^{14}	1,000	60	Cs^{137}	30	10
Mo^{99}	100	20	U^{235}	100	0.2
Ra^{226}	10	0.05	Pu^{239}	2	0.002
$\mathrm{~S}^{35}$	1,000	60	Co^{60}	7	7
Sr^{90}	10	0.4	Am^{241}	8	0.008
rr^{192}	20	10			

A_{1} means the maximum amount of special form (encapsulated or massive solid metal) material allowed in a Type A package, such that its escape from the packaging would cause only a direct radiation hazard. A_{2} means the maximum amount of normal form or non-special form material allowed in a Type A package, such that its escape from the packaging would present both a radiation and a contamination hazard. Quantities exceeding A_{1} or A_{2} values require Type B packaging.

Page 62

SPECIFIC ACTIVITY (Ci / g)

Specific Acitivity		$3.578 \mathrm{E} 5 /\left(\mathrm{T}_{1 / 2} \mathrm{x}\right.$ atomic mass) if $\mathrm{T}_{1 / 2}$ is in years				
multiply the above by if $\mathrm{T}_{1 / 2}$ is in						
		days	hours	minutes	seconds	
	Half-Life	Ci / g			Half-Life	Ci / g
H^{3}	12.3 y	9.70 E3		$\mathrm{Ni}{ }^{59}$	7.60E4 y	0.0798
Be^{7}	53.28 d	3.50 E5		Fe^{59}	44.51 d	4.97 E4
C^{14}	5730 y	4.46		Co^{60}	5.271 y	1.13 E3
O^{15}	122.2 s	6.15 E9		Cu^{62}	9.74 m	3.11 E8
N^{16}	7.13 s	9.88 E10		Ni^{65}	2.52 h	1.91 E7
F^{18}	1.830 h	9.52 E7		Zn^{65}	243.8 d	8.24 E3
Na^{22}	2.605 y	6.24 E3		$G e^{68}$	270.8 d	7.09 E3
Na^{24}	14.96 h	8.73 E6		As^{74}	127.8 d	1.38 E4
Al^{26}	7.3 E5 y	$1.89 \mathrm{E}-2$		Se^{75}	119.78 d	1.45 E4
P^{32}	14.28 d	2.86 E5		Kr^{85}	10.73 y	392
Cl^{36}	3.01 E5 y	$3.30 \mathrm{E}-2$		$R b^{88}$	17.7 m	1.21 E8
K^{40}	1.28 E9 y	$6.99 \mathrm{E}-6$		Rb^{89}	15.4 m	1.37 E8
Ar^{41}	1.82 h	4.20 E7		Sr^{89}	50.52 d	2.90 E4
K^{42}	12.36 h	6.04 E 6		Sr^{90}	29.1 y	137
K^{43}	22.3 h	3.27 E6		Y^{90}	64.1 h	5.43 E5
Sc^{46}	83.81 d	3.39 E4		Zr ${ }^{95}$	64.02 d	2.15 E4
Sc^{47}	3.349 d	8.30 E5		Nb^{95}	35.06 d	3.92 E4
Sc^{48}	43.7 h	1.49 E6		Tc ${ }^{99}$	2.13 E5 y	1.70 E-2
V^{48}	15.98 d	1.70 E5		Mo ${ }^{99}$	67 h	4.80 E5
Cr^{51}	27.70 d	9.24 E4		Tc ${ }^{99 \mathrm{~m}}$	6.01 h	5.27 E6
Mn^{52}	5.591 d	4.49 E5		Ru^{106}	1.02 y	3.31 E3
Mn^{54}	312.2 d	7.75 E3		I^{125}	60.1 d	1.74 E4
Fe^{55}	2.73 y	2.38 E3		I^{126}	12.93 d	7.97 E4
$\mathrm{Mn}{ }^{56}$	2.578 h	2.17 E7		I^{129}	1.57 E 7 y	1.77 E-4
Co^{56}	77.3 d	3.02 E4		1^{131}	8.040 d	1.24 E5
Co^{57}	271.8 d	8.43 E3		1^{133}	20.8 h	1.13 E 6
Ni^{57}	35.6 h	1.54 E6		1^{134}	52.6 m	2.67 E7
Co ${ }^{58}$	70.88 d	3.18 E4		1^{135}	6.57 h	3.53 E6

Page 63

SPECIFIC ACTIVITY (Ci/g)

	Half-Life	Ci / g		Half-Life	Ci / g
Cs ${ }^{137}$	30.17 y	86.6	Th ${ }^{228}$	1.913 y	820
$\mathrm{Ba}^{137 \mathrm{~m}}$	2.552 m	5.37 E8	Th^{229}	7300 y	0.214
Ba^{140}	12.75 d	7.32 E4	Th^{230}	7.54 E4 y	$2.06 \mathrm{E}-2$
La ${ }^{140}$	1.678 d	5.56 E5	U^{230}	20.8 d	2.73 E4
Gd^{148}	75 y	32.2	Pa^{231}	3.28 E4 y	$4.72 \mathrm{E}-2$
\|r ${ }^{192}$	73.83 d	9.21 E3	Th^{232}	1.40 E10 y	1.10 E-7
Tl^{204}	3.78 y	464	U^{232}	70 y	22.0
Tl^{206}	4.20 m	2.17 E8	U^{233}	1.592 E 5 y	9.65 E-3
Tl^{208}	3.053 m	2.96 E8	U^{234}	2.46 E5 y	6.22 E3
Pb^{210}	22.3 y	76.4	$\mathrm{Pa}^{234 \mathrm{~m}}$	1.17 m	6.86 E8
Po^{210}	138.38 d	4.49 E3	Pa^{234}	6.69 h	2.00 E6
Bi^{210}	5.01 d	1.24 E5	Th^{234}	24.10 d	2.32 E 4
Tl^{210}	1.30 m	6.88 E8	\cup^{235}	7.04 E8 y	2.16 E-6
Po^{212}	298 ns	1.78 E 17	Pu^{236}	2.87 y	528
Bi^{212}	60.6 m	1.47 E7	Np^{237}	2.14 E 6 y	$7.05 \mathrm{E}-4$
Pb^{212}	10.64 h	1.39 E6	U^{238}	4.47 E9 y	3.36 E-7
Po^{214}	163.7 us	3.22 E 14	Pu^{238}	87.7 y	17.1
Bi^{214}	19.9 m	4.41 E7	Pu^{239}	2.410 E4 y	6.21 E-2
Pb^{214}	27 m	3.25 E7	Np^{239}	2.355 d	2.32 E5
Po^{216}	145 ms	3.60 E11	Pu^{240}	6560 y	0.227
At ${ }^{218}$	1.6 s	3.23 E 10	Pu^{241}	14.4 y	103
Po^{218}	3.10 m	2.78 E8	Am^{241}	432.7 y	3.43
Rn^{220}	55.6 s	9.21 E8	Pu^{242}	3.75 E 5 y	3.94 E-3
Rn^{222}	3.8235 d	1.54 E5	Cm^{242}	162.8 d	3.31 E3
$R a^{223}$	11.435 d	5.12 E4	Am^{243}	7370 y	0.200
$R a^{224}$	3.66 d	1.59 E5	Cm^{244}	18.1 y	81.0
Ra^{225}	14.9 d	3.90 E4	Cf^{249}	351 y	4.09
Ra^{226}	1600 y	0.989	Bk^{249}	320 d	1.64 E3
Ac^{227}	21.77 y	72.4	Cf^{252}	2.638 y	538
Th^{227}	18.72 d	3.07 E4	$E s^{253}$	20.47 d	2.52 E4
Ac^{228}	6.15 h	2.24 E6			
Ra^{228}	5.76 y	2.72 E2			

CHARACTERISTIC RADIATIONS OF COMMONLY ENCOUNTERED RADIONUCLIDES

These tables show the first progeny with the type of radiation, its energy in keV, and the \% abundance of that energy. Only the most abundant energies are listed if the decay has more than three energy levels unless the additional energy levels are typically used in identifying the radionuclide. The energies are rounded to the nearest keV.

	$1{ }^{\text {st }}$ Daughter	Radiation	keV	(\% abundance)
H^{3}	He^{3}	β	18.6	(100)
Be^{7}	Li^{7}	EC γ	478	(10.42)
C^{14}	N^{14}	β	157	(100)
O^{15}	N^{15}	β^{+}	1732	(99.9)
N^{16}	O^{16}	β	3302	(4.9), 4288 (68), 10418 (26);
		γ	6129	(69), 7115 (5)
F^{18}	O^{18}	β^{+}	634	(96.73)
Na^{22}	Ne^{22}	β^{+}	546	(89.84);
		γ	1275	(99.94);
		Ne x-rays	1	(0.12)
Na^{24}	Mg^{24}	β	1390	(99.935);
		γ	1369	(99.9991), 2754 (99.862)
Al^{26}	Mg^{26}	β^{+}	1174	(81.81);
		γ	130	(2.5), 1809 (99.96), 2938 (0.24);
		Mg x-rays	1	(0.44)
P^{32}	S^{32}	β	1710	(100)
Cl^{36}	Ar^{36}	β	710	(99.0)
K^{40}	Ca^{40}	β	1312	(89.33)
	Ar ${ }^{40}$	EC γ	1461	(10.67);
		Ar x-rays	3	(0.94)
Ar^{41}	K^{41}	β	1198	(99.17), 2492 (0.78);
		γ	1294	(99.16)
K^{42}	Ca^{42}	β	1684	(0.319), 1996 (17.5), 3521 (82.1);
		γ	313	(0.319), 1525 (17.9)
K^{43}	Ca^{43}	β	422	(2.24), 827 (92.2), 1224 (3.6);
		γ	373	(87.3), 397 (11.43), 593 (11.0), 617 (80.5)
Sc^{46}	Ti ${ }^{46}$	β	357	(99.996);
		γ	889	(99.983), 1121 (99.987)
	IT	γ	143	(62.7);
		Sc x-rays	0.4	(0.11), 4 (6.26)
Sc^{47}	Ti ${ }^{47}$	β	441	(68), 601 (32);
		γ	159	(68)
Sc^{48}	Ti ${ }^{48}$	β	482	(10.01), 657 (89.99);
		γ	984	(100), 1037 (97.5), 1312 (100)

CHARACTERISTIC RADIATIONS OF COMMONLY ENCOUNTERED RADIONUCLIDES

V^{48}	$\begin{aligned} & 1^{\text {st }} \text { Daughter } \\ & \mathrm{Ti}^{48} \end{aligned}$	Radiation	keV	(\% abundance)
		β^{+}	697	(50.1);
		γ	944	(7.76), 984 (100), 1312 (97.5);
	V^{51}	Tix-rays	0.45	(0.15), 5 (9.74)
Cr^{51}		EC γ	320	(9.83);
		V x-rays	1	(0.33), 5 (22.31)
$\mathrm{Mn}{ }^{52}$	Cr^{54}	IT γ	378	(1.68);
		$E C+\beta^{+}$	905	(0.164), 2633 (96.4);
		γ	1434	(98.2), 1727 (0.216);
		$\mathrm{Cr} x$-rays	5	(0.37)
		β^{+}	575	(29.4);
		γ	744	$\begin{aligned} & \text { (90.0), } 848 \text { (3.32), } 836 \text { (94.5), } 1246 \text { (4.21), } \\ & 1434 \text { (5.07); } \end{aligned}$
		$\mathrm{Cr} x$-rays	1	(0.26), 5 (15.5), 6 (2.06)
$\mathrm{Mn}{ }^{54}$	Cr^{54}	EC γ	835	(99.975);
		$\mathrm{Cr} x$-rays	1	(0.37), 5 (22.13), 6 (2.94)
Fe^{55}	Mn^{55}	EC Mnx-rays		(0.42), 6 (24.5), 6 (3.29)
$\mathrm{Mn}{ }^{56}$	Fe^{56}	β	736	(14.6), 1038 (27.8), 2849 (56.2);
		γ	847	(98.9), 1811 (27.2), 2113 (14.3)
Co ${ }^{56}$	Fe^{56}	β^{+}	423	(1.05), 1461 (18.7);
		γ	847	$\begin{aligned} & \text { (99.958), } 1038 \text { (14.03), } 1238 \text { (67.0), } 1771 \text { (15.51), } \\ & 2598 \text { (16.9); } \end{aligned}$
		Fex-rays	1	(0.34), 6 (21.83), 7 (2.92)
Co ${ }^{57}$	Fe^{57}	EC γ	14	(9.54), 122 (85.51), 136 (10.6);
		Fex-rays	1	(0.8), 6 (49.4), 7 (6.62)
Ni^{57}	Co ${ }^{57}$	β^{+}	463	(0.87), 716 (5.7), 843 (33.1);
		γ	127	(12.9), 1378 (77.9), 1919(14.7);
		Co x-rays	1	(0.29), 7 (18.1), 8 (2.46)
Co ${ }^{58}$	Fe^{58}	β^{+}	475	(14.93);
		γ	811	(99.4), 864 (0.74), 1675 (0.54);
		Fex-rays	0.7	(0.36), 6 (23.18), 7 (3.1)
Ni^{59}	Co^{59}	EC Co x-rays	1	(0.47), 7 (29.8),
Fe^{59}	Co^{59}	$\beta{ }^{-}$	131	(1.37), 273 (45.2), 466 (53.1);
		γ	192	(3.11), 1099 (56.5), 1292 (43.2)
Co^{60}	Ni^{60}	β	318	(100);
		γ	1173	(100), 1332 (100)
Cu^{62}	$\mathrm{Ni}{ }^{62}$	β^{+}	1754	(0.132), 2927 (97.59);
		γ	876	(0.148), 1173 (0.336);
		Nix-rays	7	(0.7)
Zn^{65}	Cu^{65}	EC β^{+}	330	(1.415);
		γ	1116	(50.75);
		Cux-rays	1	(0.57), 8 (34.1), 9 (4.61)

Page 66

CHARACTERISTIC RADIATIONS OF COMMONLY ENCOUNTERED RADIONUCLIDES

Page 67

CHARACTERISTIC RADIATIONS OF COMMONLY ENCOUNTERED RADIONUCLIDES

I^{129}	$\begin{aligned} & 1^{\text {st }} \text { Daughter } \\ & \text { Xe }^{129} \end{aligned}$	Radiation	keV	(\% abundance)
		β	152	(100);
		γ	40	(7.52);
		Xe x-rays	4	(12), 29 (29.7), 30 (55), 34 (19.6)
1^{131}	$X e^{131}$	β	247	(2.12), 334 (7.36), 606 (89.3);
		γ	284	(6.05), 364 (81.2), 637 (7.26);
		Xex-rays	4	(0.55), 29 (1.35), 30 (2.5), 34 (0.89)
1^{133}	$X e^{133}$	β	460	(3.75), 520 (3.13), 880 (4.16), 1230 (83.5);
		γ	530	(86.3), 875 (4.47), 1298 (2.33);
		Xe x-rays	29	(0.151), 30 (0.281)
1^{134}	$X e^{134}$	β	1280	(32.5), 1560 (16.3), 1800 (11.2), 2420 (11.5);
		γ	847	(95.41), 884 (65.3), 1073 (15.3);
		Xe x-rays	4	(0.17), 29 (0.432), 30 (0.8), 34 (0.285)
1^{135}	$X e^{135}$	β	920	(8.7), 1030 (21.8), 1450 (23.6);
		γ	1132	(22.5), 1260 (28.6), 1678 (9.5);
		Xex-rays	30	(0.127)
Cs ${ }^{137}$	$\mathrm{Ba}^{137 \mathrm{~m}}$	β	512	(94.6), 1173 (5.4)
$\mathrm{Ba}^{137 \mathrm{~m}}$	Ba^{137}	IT γ	662	(89.98);
		Bax-rays	5	(1), 32 (5.89), 36 (1.39)
Ba^{140}	La^{140}	β	454	(26), 991 (37.4), 1005 (22);
		γ	30	(14), 163 (6.7), 537 (25);
		La x-rays	5	(15), 33 (1.51), 38 (0.36)
La ${ }^{140}$	$C e^{140}$	β	1239	(11.11), 1348 (44.5), 1677 (20.7);
		γ	329	(20.5), 487 (45.5), 816 (23.5);
		Cex-rays	5	(0.25), 34 (0.472), 35 (0.87), 39 (0.87)
$\begin{aligned} & \mathrm{Gd}^{148} \\ & \mathrm{Ir}^{192} \end{aligned}$	$\begin{aligned} & \mathrm{Sm}^{144} \\ & \mathrm{Pt}^{192} \end{aligned}$	a	3.180	(100)
		β	256	(5.65), 536 (41.4), 672 (48.3);
		γ	296	(29.02), 308 (29.68), 317 (82.85), 468 (48.1);
		Pt x-rays	9	(4.1), 65 (2.63), 67 (4.52), 76 (1.97)
	Os ${ }^{192}$	EC (4.69\%); γ	206	(3.29), 374 (0.73), 485 (3.16);
		Os x-rays	9	(1.46), 61 (1.13), 63 (1.96), 71 (0.84)

Page 68

CHARACTERISTIC RADIATIONS OF COMMONLY ENCOUNTERED RADIONUCLIDES

T ${ }^{204}$	$\begin{aligned} & 1^{\text {st }} \text { Daughter } \\ & \mathrm{Pb}^{2044} \\ & \mathrm{Hg}^{204} \end{aligned}$	Radiation	keV	(\% abundance)
		β	763	(97.42);
		EC (2.58); Hg x-rays	10	(0.76), 69 (0.425), 71 (0.723), 80 (0.318)
T^{206}	Pb^{206}	β	1520	(100)
Tl^{208}	Pb^{208}	β	1283	(23.2), 1517 (22.7), 1794 (49.3);
		γ	511	(21.6), 583 (84.2), 860 (12.46);
		Pb x-rays	11	(2.9), 73 (2.03), 75 (3.43), 85 (1.52)
Pb^{210}	Bi^{210}	β	17	(80.2), 63 (19.8);
		γ	47	(4.05);
		Bi x-rays	11	(24.3)
Po^{210}	Pb^{206}	α	5305	(99.9989)
Bi^{210}	Po^{210}	β	1161	(99.9998)
T^{210}	Pb^{210}	β	1320	(25), 1870 (56), 2340 (19);
		γ	298	(79), 800 (99), 1310 (21);
		Pb x-rays	11	(13), 73 (2.5), 75 (4.3), 85 (1.9)
Po^{212}	Pb^{208}	α	8785	(100)
$B i^{212}$	Tl^{208}	α	5767	(0.6), 6050 (25.2), 6090 (9.6);
		β	625	(3.4), 1519 (8), 2246 (48.4);
		γ	727	(11.8), 785 (1.97), 1621 (2.75);
		TI x-rays	10	(7.7)
Pb^{212}	$B i^{212}$	β	158	(5.22), 334 (85.1), 573 (9.9);
		γ	115	(0.6), 239 (44.6), 300 (3.4);
		Bi x-rays	11	(15.5), 75 (10.7), 77 (18), 87 (8)
Po^{214}	Pb^{210}	α	7687	(99.989), 6892 (0.01);
		γ	av 79	(0.013)
$B i^{214}$	Po^{214}	β	1505	(17.7), 1540 (17.9), 3270 (17.2);
		γ	609	(46.3), 1120 (15.1), 1764 (15.8);
		Po x-rays	11	(0.52), 77 (0.36), 79 (0.6), 90 (0.27)
Pb^{214}	$B i^{214}$	β	672	(48), 729 (42.5), 1024 (6.3);
		γ	242	(7.49), 295 (19.2), 352 (37.2);
		Bi x-rays	11	(13.5), 75 (6.21), 77 (10.5), 87 (4.67)
Po^{216}	Pb^{212}	α	6779	(99.998)
At^{218}	Bi^{214}	α	6650	(6), 6700 (94)
Po^{218}	Pb^{214}	α	6003	(99.978)

Page 69

CHARACTERISTIC RADIATIONS OF COMMONLY ENCOUNTERED RADIONUCLIDES

Rn^{220}	$\begin{aligned} & 1^{\text {st }} \text { Daughter } \\ & \text { Po }^{216} \end{aligned}$	Radiation	keV	(\% abundance)
		α	6288	(99.9), 5747 (0.1);
		γ	av 550	(0.1)
Rn^{222}	Po^{218}	γ	5490	(99.92), 4986 (0.08);
		γ	av 512	(0.08)
Ra^{223}	Rn^{219}	α	5606	(24.2), 5715 (52.5), 5745 (9.5);
		γ	154	(5.58), 269 (13.6), 324 (3.88);
		Rn x-rays	12	(25), 81 (14.9), 84 (24.7), 95 (11.2)
Ra^{224}	Rn^{220}	α	5449	(4.9), 5686 (95.1);
		γ	241	(3.95);
		Rn x-rays	12	(0.4), 81 (0.126), 84 (0.209)
Ra^{225}	Ac^{225}	β	322	(72), 362 (28);
		γ	40	(31);
		Ac x-rays	13	(15.8)
Ra^{226}	Rn^{222}	α	4602	(5.6), 4785 (94.4);
		γ	186	(3.28);
		Rn x-rays	12	(0.8), 81 (0.18), 84 (0.299), 95 (0.136)
$A c^{227}$	Th ${ }^{227}$	β	19	(10), 34 (35), 44 (54);
		α	4938	(0.5), 4951 (0.68);
		γ	av 17	(0.04), av 115 (0.1);
		Th x-rays	13	(1.15)
Th^{227}	Ra^{223}	α	5757	(20.3), 5978 (23.4), 6038 (24.5);
		γ	50	(8.4), 236 (11.5), 256 (6.3);
		Rax-rays	12	(42), 85 (1.41), 88 (2.32), 100 (1.06)
Ac^{228}	Th ${ }^{228}$	β	606	(8), 1168 (32), 1741 (12);
		γ	338	(11.4), 911 (27.7), 969 (16.6);
		Th x-rays	13	(39), 90 (2.1), 93 (3.5), 105 (1.6)
Ra^{228}	Ac^{228}	β	39	(100)
Th ${ }^{288}$	Ra^{224}	α	5212	(0.4), 5341 (26.7), 5423 (72.7);
		γ	84	(1.2), 132 (0.12), 216 (0.24);
		Ra x-rays	12	(9.6)
Th^{229}	Ra^{225}	α	4815	(9.3), 4845 (56.2), 4901 (10.2);
		γ	31	(4), 194 (4.6), 211 (3.3);
		Rax-rays	12	(81), 85 (16.5), 88 (27.1), 100 (12.4)
Th ${ }^{230}$	Ra^{226}	α	4476	(0.12), 4621 (23.4), 4688 (76.3);
		γ	68	(0.4), 168 (0.07);
		Rax-rays	12	(8.4)
U^{230}	Th ${ }^{226}$	α	5667	(0.4), 5818 (32), 5889 (67.4);
		γ	72	(0.6), 154 (0.13), 230 (0.12);
		Th x-rays	13	(12.2)
Pa^{231}	$A c^{227}$	α	4950	(22.8), 5011 (25.4), 5028 (20);
		γ	27	(9.3), 300 (2.3), 303 (2.3);
		Ac x-rays	13	(43), 88 (0.62), 91 (1.02), 102 (0.47)

CHARACTERISTIC RADIATIONS OF COMMONLY ENCOUNTERED RADIONUCLIDES

Th ${ }^{232}$	$\begin{aligned} & 1^{\text {st }} \text { Daughter } \\ & \text { Ra }^{228} \end{aligned}$	Radiation	keV 3830	(\% abundance) 4010 (77):
		α	3830	(0.2), 3953 (23), 4010 (77);
		γ	59	(0.19), 125 (0.04);
		Ra x-rays	12	(8.4)
U^{232}	Th ${ }^{228}$	α	5139	(0.3), 5264 (31.2), 5320 (68.6),
		γ	58	(0.2), 129 (0.082), 270 (0.0038), 328 (0.0034);
		Th x-rays	13	(12)
U^{233}	Th ${ }^{229}$	α	4729	(1.6), 4784 (13.2), 4824 (84.4);
		γ	115	(0.18);
		Th x-rays	13	(3.9)
U^{234}	Th ${ }^{230}$	α	4605	(0.2), 4724 (27.4), 4776 (72.4);
		γ	53	(0.118), 121 (0.04);
		Th x-rays	13	(10.5)
Pa^{234}	U^{234}	β	484	(35), 654 (16), 1183 (10);
		γ	131	(20.4), 882 (24), 946 (12);
		U x-rays	14	(114), 95 (15.7), 98 (25.4), 111(11.8)
$\mathrm{Pa}^{234 \mathrm{~m}}$	U^{234}	β	1236	(0.7), 1471 (0.6), 2281 (98.6);
		γ	766	(0.2), 1001 (0.6);
		U x-rays	14	(0.44), 95 (0.115), 98 (0.187)
Th^{234}	Pa^{234}	β	76	(2), 96 (25.3), 189 (72.5);
		γ	63	(3.8), 92 (2.7), 93 (2.7);
		Pax-rays	13	(9.6)
U^{235}	Th ${ }^{231}$	α	4364	(11), 4370 (6), 4396 (55);
		γ	144	(10.5), 163 (4.7), 186 (54);
		Th x-rays	13	(31), 90 (2.7), 93 (4.5), 105 (2.1)
Pu^{236}	U^{232}	α	5614	(0.2), 5722 (31.8), 5770 (68.1);
		γ	av 61	(0.08);
		U x-rays	14	(13)
$N p^{237}$	Pa^{233}	α	4766	(8), 4771 (25), 4788 (47);
		γ	29	(14), 87 (12.6), 95 (0.8);
		Pax-rays	13	(59), 92 (1.58), 96 (2.6), 108 (1.6)
U^{238}	Th ${ }^{234}$	α	4039	(0.2), 4147 (23.4), 4196 (77.4);
		γ	av 66	(0.1);
		Th x-rays	13	(8.8)
Pu^{238}	U^{234}	α	5358	(0.1), 5456 (28.3), 5499 (71.6);
		γ	44	(0.039), 100 (0.0075), 153 (0.0013);
		U x-rays	14	(11.6)

Page 71

CHARACTERISTIC RADIATIONS OF COMMONLY ENCOUNTERED RADIONUCLIDES

Pu^{239}	$\begin{aligned} & 1^{\text {st }} \text { Daughter } \\ & \text { U }^{235} \end{aligned}$	Radiation	keV	(\% abundance)
		α	5105	(11.5), 5143 (15.1), 5155 (73.3);
		γ	52	(0.02), 129 (0.0062), 375 (0.0015), 414 (0.0015);
		U x-rays	14	(4.4)
$N p^{239}$	Pu^{239}	β	330	(35.7), 391 (7.1), 436 (52);
		γ	106	(22.7), 228 (10.7), 278 (14.1);
		Pu x-rays	14	(62), 100 (14.7), 104 (23.7), 117 (11.1)
Pu^{240}	U^{236}	α	5123	(26.4), 5168 (73.5);
		γ	av 54	(0.05);
		U x-rays	14	(11)
Pu^{241}	Am^{241}	β	21	(99.99755);
		α	4900	(0.00245)
Am^{241}	Np^{237}	α	5388	(1.4), 5443 (12.8), 5486 (85.2);
		γ	26	(2.4), 33 (0.1), 60 (35.9);
		Np x-rays	14	(43)
Pu^{242}	U^{238}	α	4856	(22.4), 4901 (78);
		U x-rays	14	(9.1)
Cm^{242}	Pu^{238}	α	6070	(25.9), 6113 (74.1);
		γ	av 59	(0.04);
		Pux-rays	14	(11.5)
Am^{243}	Np^{239}	α	5181	(1), 5234 (10.6), 5275 (87.9);
		γ	43	(5.5), 75 (66), 118 (0.55);
		Np x-rays	14	(39)
Cm ${ }^{244}$	Pu^{240}	α	5763	(23.6), 5805 (76.4);
		γ	av 57	(0.03);
		Pux-rays	14	(10.3)
$C f^{249}$	Cm^{245}	α	5760	(3.66), 5814 (84.4), 5946 (4);
		γ	253	(2.7), 333 (15.5), 388 (66);
		Cm x-rays	15	(30), 105 (2.19), 109 (3.5), 123 (1.66)
Bk^{249}	$C f^{249}$	β	126	(100)
Cf^{252}	Cm^{248}	α	5977	(0.2), 6076 (15.2), 6118 (81.6);
		γ	av 68	(0.03);
		Cm x-rays	15	(7.3);
		spontaneous	ission	(3)
$E s^{253}$	Bk^{249}	α	6540	(0.9), 6592 (6.6), 6633 (89.8);
		γ	av 203	(0.14);
		Bk x-rays	15	(4.6)

See the note at the beginning of these tables.

SPECIFIC ACTIVITY AND RADIATION LEVELS OF COMMONLY ENCOUNTERED RADIONUCLIDES

Isotope	Ci/gram	gram/Ci	R / hr per Ci at 30 cm	R/hr per gram at 30 cm
H^{3}	$9.70 \mathrm{E}+3$	1.03E-4	N/A	N/A
Be^{7}	$3.50 \mathrm{E}+5$	2.86E-6	0.38	$1.33 \mathrm{E}+5$
C^{14}	4.46	0.224	N/A	N/A
O^{15}	$6.15 \mathrm{E}+9$	$1.63 \mathrm{E}-10$	7.98	$4.91 \mathrm{E}+10$
N^{16}	$9.88 \mathrm{E}+10$	$1.01 \mathrm{E}-11$	16.35	$1.62 \mathrm{E}+12$
F^{18}	$9.52 \mathrm{E}+7$	$1.05 \mathrm{E}-8$	7.72	$7.35 \mathrm{E}+8$
Na^{22}	$6.24 \mathrm{E}+3$	$1.60 \mathrm{E}-4$	14.85	$9.27 \mathrm{E}+4$
Na^{24}	$8.73 \mathrm{E}+6$	1.15E-7	20.55	$1.79 \mathrm{E}+8$
Al^{26}	1.89E-2	53	16.6	0.313
P^{32}	$2.86 \mathrm{E}+5$	3.50E-6	N/A	N/A
Cl^{36}	3.30E-2	30.3	N/A	N/A
K^{40}	6.99E-6	$1.43 \mathrm{E}+5$	0.91	6.36E-6
Ar^{41}	$4.20 \mathrm{E}+7$	$2.38 \mathrm{E}-8$	7.73	$3.25 \mathrm{E}+8$
K^{42}	$6.04 \mathrm{E}+6$	1.66E-7	1.4	$8.45 \mathrm{E}+6$
K^{43}	$3.27 \mathrm{E}+6$	3.06E-7	5.6	$1.83 \mathrm{E}+7$
Sc^{46}	$3.39 \mathrm{E}+4$	2.95E-5	10.9	$3.69 \mathrm{E}+5$
Sc^{47}	$8.30 \mathrm{E}+5$	1.21E-6	0.56	$4.65 \mathrm{E}+5$
Sc^{48}	$1.49 \mathrm{E}+6$	6.69E-7	21	$3.14 \mathrm{E}+7$
V^{48}	$1.70 \mathrm{E}+5$	5.87E-6	15.6	$2.66 \mathrm{E}+6$
Cr^{51}	$9.24 \mathrm{E}+4$	$1.08 \mathrm{E}-5$	0.16	$1.48 \mathrm{E}+4$
Mn^{52}	4.49E+5	2.23E-6	18.6	$8.36 \mathrm{E}+6$
$\mathrm{Mn}{ }^{54}$	$7.75 \mathrm{E}+3$	1.29E-4	5.67	$4.39 \mathrm{E}+4$
Fe^{55}	$2.38 \mathrm{E}+3$	4.20E-4	N/A	N/A
Mn^{56}	$2.17 \mathrm{E}+7$	$4.61 \mathrm{E}-8$	10.24	$2.22 \mathrm{E}+8$
Co^{56}	$3.02 \mathrm{E}+4$	$3.31 \mathrm{E}-5$	21.36	$6.44 \mathrm{E}+5$
Cos ${ }^{57}$	$8.43 \mathrm{E}+3$	1.19E-4	1.68	$1.42 \mathrm{E}+4$
Ni^{57}	$1.54 \mathrm{E}+6$	$6.47 \mathrm{E}-7$	12	$1.85 \mathrm{E}+7$
Cos ${ }^{58}$	$3.18 \mathrm{E}+4$	$3.15 \mathrm{E}-5$	6.81	$2.16 \mathrm{E}+5$
Ni ${ }^{59}$	7.98E-2	12.5	N/A	N/A

SPECIFIC ACTIVITY AND RADIATION LEVELS OF COMMONLY ENCOUNTERED RADIONUCLIDES

Isotope	Ci/gram	gram/Ci	$\mathrm{R} / \mathrm{hr} \text { per } \mathrm{Ci}$ $\text { at } 30 \mathrm{~cm}$	R / hr per gram at 30 cm
Fe^{59}	4.97E+4	$2.01 \mathrm{E}-5$	7.34	$3.65 \mathrm{E}+5$
Co ${ }^{60}$	$1.13 \mathrm{E}+3$	8.84E-4	15.19	$1.72 \mathrm{E}+4$
Cu^{62}	$3.11 \mathrm{E}+8$	3.21E-9	7.85	$2.44 \mathrm{E}+9$
$\mathrm{Z} \mathrm{l}^{65}$	$8.24 \mathrm{E}+3$	$1.21 \mathrm{E}-4$	3.66	$3.02 \mathrm{E}+4$
$\mathrm{Ge}{ }^{68}$	$7.09 \mathrm{E}+3$	$1.41 \mathrm{E}-4$	0.67	$4.75 \mathrm{E}+3$
Se^{75}	$1.45 \mathrm{E}+4$	6.88E-5	9.53	$1.39 \mathrm{E}+5$
Kr^{85}	392	2.55E-3	0.02	7.85
Rb^{88}	$1.21 \mathrm{E}+8$	8.29E-9	3.58	$4.32 \mathrm{E}+8$
Rb^{89}	$1.37 \mathrm{E}+8$	7.3E-9	2.17	$1.67 \mathrm{E}+9$
Sr^{89}	$2.90 \mathrm{E}+4$	$3.44 \mathrm{E}-5$	9.00E-4	26.1
Sr^{90}	137	7.32E-3	N/A	N/A
Y^{90}	$5.43 \mathrm{E}+5$	$1.84 \mathrm{E}-6$	N/A	N/A
Nb^{94}	0.19	5.25	10.89	2.07
Zr ${ }^{95}$	$2.15 \mathrm{E}+4$	$4.66 \mathrm{E}-5$	5.16	$1.11 \mathrm{E}+5$
Tc ${ }^{99}$	0.017	58.8	N/A	N/A
Mo^{99}	$4.80 \mathrm{E}+5$	$2.08 \mathrm{E}-6$	1.25	$6.00 \mathrm{E}+5$
Tc ${ }^{99 \mathrm{~m}}$	$5.27 \mathrm{E}+6$	$1.90 \mathrm{E}-7$	1.36	7.16E+6
Ru^{106}	$3.31 \mathrm{E}+3$	3.02E-4	N/A	N/A
I^{125}	$1.74 \mathrm{E}+4$	5.75E-5	3.055	$5.31 \mathrm{E}+4$
I^{126}	7.97E+4	1.25E-5	4.34	$3.46 \mathrm{E}+5$
I^{129}	$1.77 \mathrm{E}-4$	$5.66 \mathrm{E}+3$	1.4	$2.47 \mathrm{E}-4$
I^{131}	$1.24 \mathrm{E}+5$	8.06E-6	3.14	$3.89 \mathrm{E}+5$
I^{133}	$1.13 \mathrm{E}+6$	8.83E-7	4.54	$5.14 \mathrm{E}+6$
I^{134}	$2.67 \mathrm{E}+7$	$3.75 \mathrm{E}-8$	17.47	$4.66 \mathrm{E}+8$
1^{135}	$3.53 \mathrm{E}+6$	2.83E-7	9.57	$3.38 \mathrm{E}+7$
Cs ${ }^{137}$	86.6	0.0116	N/A	N/A
$\mathrm{Ba}^{137 m}$	$5.37 \mathrm{E}+8$	1.86E-9	4.44	$2.39 E+9$
Ba^{140}	$7.32 \mathrm{E}+4$	$1.37 \mathrm{E}-5$	1.81	$1.32 \mathrm{E}+5$
La^{140}	$5.56 \mathrm{E}+5$	1.80E-6	12.42	$6.90 \mathrm{E}+6$
Gd ${ }^{148}$	32.2	0.031	N/A	N/A

SPECIFIC ACTIVITY AND RADIATION LEVELS OF COMMONLY ENCOUNTERED RADIONUCLIDES
Isotope
Ir^{192}
Tl^{204}
Tl^{206}
Tl^{208}
$\mathrm{~Pb}^{210}$
Po^{210}
Bi^{210}
Tl^{210}
Pp^{212}
Bi^{212}
$\mathrm{~Pb}^{212}$
Po^{214}
Bi^{214}
$\mathrm{~Pb}^{214}$
P^{216}
At^{218}
P^{218}
Rn^{220}
Rn^{222}
Ra^{223}
Ra^{224}
Ra^{225}
Ra^{226}
Ac^{227}
Th^{227}
Ac^{228}
Ra^{228}
Th^{228}
Th^{229}
Th^{230}

Ci/gram	gram/Ci
$9.21 \mathrm{E}+3$	$1.09 \mathrm{E}-4$
464	$2.16 \mathrm{E}-3$
$2.17 \mathrm{E}+8$	$4.61 \mathrm{E}-9$
$2.96 \mathrm{E}+8$	$3.38 \mathrm{E}-9$
76.4	0.0131
$4.49 \mathrm{E}+3$	$2.23 \mathrm{E}-4$
$1.24 \mathrm{E}+5$	$8.06 \mathrm{E}-6$
$6.88 \mathrm{E}+8$	$1.45 \mathrm{E}-9$
$1.78 \mathrm{E}+17$	$5.61 \mathrm{E}-18$
$1.47 \mathrm{E}+7$	$6.82 \mathrm{E}-8$
$1.39 \mathrm{E}+6$	$7.20 \mathrm{E}-7$
$3.22 \mathrm{E}+14$	$3.11 \mathrm{E}-15$
$4.41 \mathrm{E}+7$	$2.27 \mathrm{E}-8$
$3.25 \mathrm{E}+7$	$3.08 \mathrm{E}-8$
$3.60 \mathrm{E}+11$	$2.78 \mathrm{E}-12$
$3.23 \mathrm{E}+10$	$3.09 \mathrm{E}-11$
$2.78 \mathrm{E}+8$	$3.60 \mathrm{E}-9$
$9.21 \mathrm{E}+8$	$1.09 \mathrm{E}-9$
$1.54 \mathrm{E}+5$	$6.50 \mathrm{E}-6$
$5.12 \mathrm{E}+4$	$1.95 \mathrm{E}-5$
$1.59 \mathrm{E}+5$	$6.28 \mathrm{E}-6$
$3.90 \mathrm{E}+4$	$2.57 \mathrm{E}-5$
0.989	1.01
72.4	0.0138
$3.07 \mathrm{E}+4$	$3.25 \mathrm{E}-5$
$2.24 \mathrm{E}+6$	$4.47 \mathrm{E}-7$
272	$3.67 \mathrm{E}-3$
820	$1.22 \mathrm{E}-3$
0.213	4.67
0.0206	48.5

R / hr per Ci	
at 30 cm	R / hr per gra at 30 cm
6.56	$6.04 \mathrm{E}+4$
0.0124	5.75
$\mathrm{~N} / \mathrm{A}$	N / A
18.89	$5.59 \mathrm{E}+9$
2.79	213
$5.84 \mathrm{E}-5$	0.262
$\mathrm{~N} / \mathrm{A}$	N / A
18.88	$1.30 \mathrm{E}+10$
$\mathrm{~N} / \mathrm{A}$	N / A
2.16	$3.16 \mathrm{E}+7$
3.03	$4.21 \mathrm{E}+6$
$5.74 \mathrm{E}-4$	$1.85 \mathrm{E}+11$
9.31	$4.11 \mathrm{E}+8$
3.59	$1.17 \mathrm{E}+8$
$9.95 \mathrm{E}-5$	$3.58 \mathrm{E}+7$
$\mathrm{~N} / \mathrm{A}$	N / A
N / A	N / A
$3.99 \mathrm{E}-3$	$3.68 \mathrm{E}+6$
$3.03 \mathrm{E}-3$	466
3.61	$1.85 \mathrm{E}+5$
0.12	$1.91 \mathrm{E}+4$
1.71	$6.66 \mathrm{E}+4$
0.13	0.129
0.1	7.24
4.7	$1.44 \mathrm{E}+5$
9.36	$2.09 \mathrm{E}+7$
5.1	$1.39 \mathrm{E}+3$
0.88	722
8.16	1.75
0.76	0.0157

SPECIFIC ACTIVITY AND RADIATION LEVELS OF COMMONLY ENCOUNTERED RADIONUCLIDES

			R / hr per Ci Isotope	$\mathrm{Ci} /$ Rram R hr per gram

These tables may also be expressed in units of $\mathrm{mCi} / \mathrm{mg}, \mathrm{mg} / \mathrm{Ci}, \mathrm{mR} / \mathrm{hr}$ per mCi and $\mathrm{mR} / \mathrm{hr}$ per mg simply by changing all headings to those values.

Gamma exposure in mR/hr at 30 cm vs Particle Size in microns for commonly encountered radionuclides

Isotope	1μ	10μ	100μ	$1,000 \mu$
Be^{7}	$1.3 \mathrm{E}-4$	$1.3 \mathrm{E}-1$	1.3 E 2	1.3 E 5
Na^{22}	$4.7 \mathrm{E}-5$	$4.7 \mathrm{E}-2$	4.7 E 1	4.7 E 4
Na^{24}	$9.5 \mathrm{E}-2$	9.5 E 1	9.5 E 4	9.5 E 7
Al^{26}	$4.5 \mathrm{E}-10$	$4.5 \mathrm{E}-7$	$4.5 \mathrm{E}-4$	$4.5 \mathrm{E}-1$
Mg^{28}	$4.8 \mathrm{E}-2$	4.8 E 1	4.8 E 4	4.8 E 7
Sc^{26}	$6.9 \mathrm{E}-4$	$6.9 \mathrm{E}-1$	6.9 E 2	6.9 E 5
$\mathrm{~V}^{48}$	$1 \mathrm{E}-2$	1 E 1	1 E 4	1 E 7
Cr^{51}	$9 \mathrm{E}-5$	$9 \mathrm{E}-2$	9 E 1	9 E 4
Mn^{52}	$3.8 \mathrm{E}-2$	3.8 E 1	3.8 E 4	3.8 E 7
Mn^{54}	$1.7 \mathrm{E}-4$	$1.7 \mathrm{E}-1$	1.7 E 2	1.7 E 5
Mn^{56}	$8.3 \mathrm{E}-1$	8.3 E 2	8.3 E 5	8.3 E 8
Co^{56}	$2.9 \mathrm{E}-3$	2.9	2.9 E 3	2.9 E 6
Co^{57}	$6.6 \mathrm{E}-5$	$6.6 \mathrm{E}-2$	6.6 E 1	6.6 E 4
Co^{58}	$1 \mathrm{E}-3$	1	1 E 3	1 E 6
Fe^{59}	$1.5 \mathrm{E}-3$	1.5	1.5 E 3	1.5 E 6
Co^{60}	$8 \mathrm{E}-5$	$8 \mathrm{E}-2$	8 E 1	8 E 4
Zn^{65}	$1.1 \mathrm{E}-4$	$1.1 \mathrm{E}-1$	1.1 E 2	1.1 E 5
Se^{75}	$3.5 \mathrm{E}-4$	$3.5 \mathrm{E}-1$	3.5 E 2	3.5 E 5

Gamma exposure in mR/hr at 30 cm vs Particle Size in microns for commonly encountered radionuclides

Isotope	1μ	10μ	100μ	$1,000 \mu$
Y^{88}	$6.3 \mathrm{E}-4$	$6.3 \mathrm{E}-1$	6.3 E 2	6.3 E 5
Zr^{95}	$3.8 \mathrm{E}-4$	$3.8 \mathrm{E}-1$	3.8 E 2	3.8 E 5
Mo^{99}	$3.2 \mathrm{E}-3$	3.2	3.2 E 3	3.2 E 6
Cd^{109}	$2.4 \mathrm{E}-5$	$2.4 \mathrm{E}-2$	2.4 E 1	2.4 E 4
Cs^{137}	$3.6 \mathrm{E}-7$	$3.6 \mathrm{E}-4$	$3.6 \mathrm{E}-1$	3.6 E 2
Ba^{140}	$2.4 \mathrm{E}-4$	$2.4 \mathrm{E}-1$	2.4 E 2	2.4 E 5
$\mathrm{~W}^{187}$	$1.1 \mathrm{E}-3$	1.1	1.1 E 3	1.1 E 6
Os^{191}	$3.9 \mathrm{E}-4$	$3.9 \mathrm{E}-1$	3.9 E 2	3.9 E 5
Ir^{192}	$7.1 \mathrm{E}-4$	$7.1 \mathrm{E}-1$	7.1 E 2	7.1 E 5
Au^{198}	$8 \mathrm{E}-3$	8	8 E 3	8 E 6
Ra^{226}	$3.5 \mathrm{E}-10$	$3.5 \mathrm{E}-7$	$3.5 \mathrm{E}-4$	$3.5 \mathrm{E}-1$
U^{234}	$5.4 \mathrm{E}-11$	$5.4 \mathrm{E}-8$	$5.4 \mathrm{E}-5$	$5.4 \mathrm{E}-2$
U^{235}	$8.1 \mathrm{E}-14$	$8.1 \mathrm{E}-11$	$8.1 \mathrm{E}-8$	$8.1 \mathrm{E}-5$
$\mathrm{~Np}^{237}$	$3.9 \mathrm{E}-11$	$3.9 \mathrm{E}-8$	$3.9 \mathrm{E}-5$	$3.9 \mathrm{E}-2$
Pu^{238}	$1.6 \mathrm{E}-7$	$1.6 \mathrm{E}-4$	$1.6 \mathrm{E}-1$	1.6 E 2
Pu^{239}	$2.2 \mathrm{E}-10$	$2.2 \mathrm{E}-7$	$2.2 \mathrm{E}-4$	$2.2 \mathrm{E}-1$
Pu^{240}	$2 \mathrm{E}-9$	$2 \mathrm{E}-6$	$2 \mathrm{E}-3$	2
Am^{241}	$1.3 \mathrm{E}-7$	$1.3 \mathrm{E}-4$	$1.3 \mathrm{E}-1$	1.3 E 2
$1000 \mu=$	1 mm (millimeter) $=$	0.03937 inches		
100μ is easily discernible with the naked eye				
50μ is not easily discernible with the naked eye				

INGESTION ALIs OF

COMMONLY ENCOUNTERED RADIONUCLIDES

Isotope	$\mathrm{mCi} / \mathrm{ALI}$	$\mathrm{mg} / \mathrm{ALI}$	$\mathrm{DPM} / \mathrm{ALI}$
H^{3}	80	$8.25 \mathrm{E}-3$	$1.78 \mathrm{E}+11$
Be^{7}	40	$1.14 \mathrm{E}-4$	$8.88 \mathrm{E}+10$
C^{14}	2	0.448	$4.44 \mathrm{E}+9$
O^{15}	$\mathrm{~N} / \mathrm{A}$	N / A	N / A
N^{16}	$\mathrm{~N} / \mathrm{A}$	N / A	N / A
F^{18}	50	$5.25 \mathrm{E}-7$	$1.11 \mathrm{E}+11$
Na^{22}	0.4	$6.41 \mathrm{E}-5$	$8.88 \mathrm{E}+8$
Na^{24}	4	$4.58 \mathrm{E}-7$	$8.88 \mathrm{E}+9$
Al^{26}	0.4	21.2	$8.88 \mathrm{E}+8$
P^{32}	0.6	$2.1 \mathrm{E}-6$	$1.33 \mathrm{E}+9$
Cl^{36}	2	60.6	$4.44 \mathrm{E}+9$
$\mathrm{~K}^{40}$	0.3	$4.29 \mathrm{E}+4$	$6.66 \mathrm{E}+8$
Ar^{41}	$\mathrm{~N} / \mathrm{A}$	N / A	N / A
K^{42}	5	$8.28 \mathrm{E}-7$	$1.11 \mathrm{E}+10$
$\mathrm{~K}^{43}$	5	$1.84 \mathrm{E}-6$	$1.33 \mathrm{E}+10$
Sc^{46}	0.9	$2.66 \mathrm{E}-5$	$2.00 \mathrm{E}+9$
Sc^{47}	2	$2.41 \mathrm{E}-6$	$4.44 \mathrm{E}+9$
Sc^{48}	0.8	$5.35 \mathrm{E}-7$	$1.78 \mathrm{E}+9$
$\mathrm{~V}^{48}$	0.6	$3.52 \mathrm{E}-6$	$1.33 \mathrm{E}+9$
Cr^{51}	40	$4.33 \mathrm{E}-4$	$8.88 \mathrm{E}+10$
Mn^{52}	0.7	$1.56 \mathrm{E}-6$	$1.55 \mathrm{E}+9$
Mn^{54}	2	$2.58 \mathrm{E}-4$	$4.44 \mathrm{E}+9$
Fe^{55}	9	$3.78 \mathrm{E}-3$	$2.00 \mathrm{E}+10$
Mn^{56}	5	$2.30 \mathrm{E}-7$	$1.11 \mathrm{E}+10$
Co^{56}	$1.33 \mathrm{E}-5$	$8.88 \mathrm{E}+8$	
C^{57}	0.4	$4.75 \mathrm{E}-4$	$8.88 \mathrm{E}+9$
Ni^{57}	4	$1.29 \mathrm{E}-6$	$4.44 \mathrm{E}+9$
Co^{58}	2	$3.15 \mathrm{E}-5$	$2.22 \mathrm{E}+9$
Ni^{59}	1	251	$4.44 \mathrm{E}+10$
	20		

Page 79

INGESTION ALIs OF

 COMMONLY ENCOUNTERED RADIONUCLIDES| Isotope | $\mathrm{mCi} / \mathrm{ALI}$ | mg/ALI | DPM/ALI |
| :---: | :---: | :---: | :---: |
| Fe^{59} | 0.8 | 1.61E-5 | $1.78 \mathrm{E}+9$ |
| Co^{60} | 0.2 | 1.77E-4 | $4.44 \mathrm{E}+8$ |
| Cu^{62} | 1 | 3.21E-9 | $2.22 \mathrm{E}+9$ |
| $\mathrm{Zn}{ }^{65}$ | 0.4 | 4.85E-5 | $8.88 \mathrm{E}+8$ |
| $\mathrm{Ge}{ }^{68}$ | 5 | 7.05E-4 | $1.11 \mathrm{E}+10$ |
| Se^{75} | 0.5 | $3.44 \mathrm{E}-5$ | $1.11 \mathrm{E}+9$ |
| Kr^{85} | N/A | N/A | N/A |
| Rb^{88} | 20 | 1.66E-7 | $4.44 \mathrm{E}+10$ |
| Rb^{89} | 40 | 2.92E-7 | $8.88 \mathrm{E}+10$ |
| Sr^{89} | 0.5 | 1.72E-5 | $1.11 \mathrm{E}+9$ |
| Sr^{90} | 0.03 | 2.20E-4 | $6.66 \mathrm{E}+7$ |
| Y^{90} | 0.4 | 7.36E-7 | $8.88 \mathrm{E}+8$ |
| Nb^{94} | 0.9 | 4.37 | $2.00 \mathrm{E}+9$ |
| Zr ${ }^{95}$ | 1 | 4.66E-5 | $2.22 \mathrm{E}+9$ |
| Tc ${ }^{99}$ | 4 | 236 | $8.88 \mathrm{E}+9$ |
| Mo^{99} | 1 | 2.08E-6 | $2.22 \mathrm{E}+9$ |
| Tc ${ }^{99 \mathrm{~m}}$ | 80 | 1.52E-5 | $1.78 \mathrm{E}+11$ |
| Ru^{106} | 0.2 | 6.04E-5 | $4.44 \mathrm{E}+8$ |
| I^{125} | 0.04 | 2.30E-6 | $8.88 \mathrm{E}+7$ |
| I^{126} | 0.02 | $2.51 \mathrm{E}-7$ | $4.44 \mathrm{E}+7$ |
| I^{129} | 5E-3 | 28.3 | $1.11 \mathrm{E}+7$ |
| I^{131} | 0.03 | 2.42E-7 | $6.66 \mathrm{E}+7$ |
| I^{133} | 0.1 | $8.83 \mathrm{E}-8$ | $2.22 \mathrm{E}+8$ |
| I^{134} | 20 | 7.50E-7 | $4.44 \mathrm{E}+10$ |
| I^{135} | 0.8 | 2.26E-7 | $1.78 \mathrm{E}+9$ |
| Cs ${ }^{137}$ | 0.1 | 1.16E-3 | $2.22 \mathrm{E}+8$ |
| $\mathrm{Ba}^{137 \mathrm{~m}}$ | N/A | N/A | N/A |
| Ba^{140} | 0.5 | 6.83E-6 | $1.11 \mathrm{E}+9$ |
| La^{140} | 0.6 | 1.08E-6 | $1.33 \mathrm{E}+9$ |

INGESTION ALIs OF

 COMMONLY ENCOUNTERED RADIONUCLIDES| Isotope | $\mathrm{mCi} / \mathrm{ALI}$ | mg/ALI | DPM/ALI |
| :---: | :---: | :---: | :---: |
| Gd^{148} | 0.01 | 3.10E-4 | $2.22 \mathrm{E}+7$ |
| $\mid{ }^{192}$ | 0.9 | 9.77E-5 | $2.00 \mathrm{E}+9$ |
| Tl^{204} | 2 | $4.31 \mathrm{E}-3$ | $4.44 \mathrm{E}+9$ |
| T^{206} | * | * | * |
| T^{208} | * | * | * |
| Pb^{210} | 6E-4 | 7.85E-6 | $1.33 \mathrm{E}+6$ |
| Po^{210} | 3E-3 | $6.68 \mathrm{E}-7$ | $6.66 \mathrm{E}+6$ |
| Bi^{210} | 0.8 | 6.44E-6 | $1.78 \mathrm{E}+9$ |
| T^{210} | * | * | * |
| Po^{212} | * | * | * |
| Bi^{212} | 5 | $3.41 \mathrm{E}-7$ | $1.11 \mathrm{E}+10$ |
| Pb^{212} | 0.08 | $5.76 \mathrm{E}-8$ | $1.78 \mathrm{E}+10$ |
| Po ${ }^{214}$ | * | * | * |
| Bi^{214} | 20 | $4.53 \mathrm{E}-7$ | $4.44 \mathrm{E}+10$ |
| Pb^{214} | 9 | $2.77 \mathrm{E}-7$ | $2.00 \mathrm{E}+10$ |
| Po^{216} | * | * | * |
| At ${ }^{218}$ | * | * | * |
| Po^{218} | * | * | * |
| Rn^{220} | N/A | N/A | N/A |
| Rn^{222} | N/A | N/A | N/A |
| Ra^{223} | 5E-3 | $9.76 \mathrm{E}-8$ | $1.11 \mathrm{E}+7$ |
| Ra^{224} | 8E-3 | 5.02E-8 | $1.78 \mathrm{E}+7$ |
| Ra^{225} | 8E-3 | $2.05 \mathrm{E}-7$ | $1.78 \mathrm{E}+7$ |
| Ra^{226} | 2E-3 | 2.02E-3 | $4.44 \mathrm{E}+6$ |
| Ac ${ }^{227}$ | 2E-4 | 2.76E-6 | $4.44 \mathrm{E}+5$ |
| Th^{227} | 0.1 | 3.25E-6 | $2.22 \mathrm{E}+8$ |
| Ac ${ }^{228}$ | 2 | $8.95 \mathrm{E}-7$ | $4.44 \mathrm{E}+9$ |
| Ac ${ }^{228}$ | 0.02 | 7.34E-5 | $4.44 \mathrm{E}+7$ |
| Th^{228} | 6E-3 | 7.31E-6 | $1.33 \mathrm{E}+7$ |

INGESTION ALIs OF

COMMONLY ENCOUNTERED RADIONUCLIDES

Isotope	$\mathrm{mCi} / \mathrm{ALI}$	$\mathrm{mg} / \mathrm{ALI}$	$\mathrm{DPM} / \mathrm{ALI}$
Th^{229}	$6 \mathrm{E}-3$	0.028	$1.33 \mathrm{E}+7$
Th^{230}	$4 \mathrm{E}-3$	0.194	$8.88 \mathrm{E}+6$
U^{230}	$4 \mathrm{E}-3$	$1.47 \mathrm{E}-7$	$8.88 \mathrm{E}+6$
$\mathrm{~Pa}^{231}$	$2 \mathrm{E}-4$	$4.24 \mathrm{E}-3$	$4.44 \mathrm{E}+5$
Th^{232}	$7 \mathrm{E}-4$	$6.35 \mathrm{E}+3$	$1.55 \mathrm{E}+6$
U^{332}	$2 \mathrm{E}-3$	$9.08 \mathrm{E}-5$	$4.44 \mathrm{E}+6$
U^{233}	0.01	1.04	$2.22 \mathrm{E}+7$
U^{234}	0.01	1.61	$2.22 \mathrm{E}+7$
$\mathrm{~Pa}^{234 m}$	2	$2.91 \mathrm{E}-9$	$4.44 \mathrm{E}+9$
$\mathrm{~Pa}^{234}$	2	$9.99 \mathrm{E}-7$	$4.44 \mathrm{E}+9$
Th^{234}	0.3	$1.30 \mathrm{E}-5$	$6.66 \mathrm{E}+8$
U^{235}	0.01	$4.62 \mathrm{E}+3$	$2.22 \mathrm{E}+7$
Pu^{236}	$2 \mathrm{E}-3$	$3.79 \mathrm{E}-6$	$4.44 \mathrm{E}+6$
$\mathrm{~Np}^{237}$	$5 \mathrm{E}-4$	0.709	$1.11 \mathrm{E}+6$
U^{338}	0.01	$2.97 \mathrm{E}+4$	$2.22 \mathrm{E}+7$
Pu^{238}	$9 \mathrm{E}-4$	$5.25 \mathrm{E}-5$	$2.00 \mathrm{E}+6$
Pu^{239}	$8 \mathrm{E}-4$	0.0129	$1.78 \mathrm{E}+6$
$\mathrm{~Np}^{239}$	2	$8.62 \mathrm{E}-6$	$4.44 \mathrm{E}+9$
Pu^{240}	$8 \mathrm{E}-4$	$3.52 \mathrm{E}-3$	$1.78 \mathrm{E}+6$
Pu^{241}	0.04	$3.88 \mathrm{E}-4$	$8.88 \mathrm{E}+7$
Am^{241}	$8 \mathrm{E}-4$	$2.33 \mathrm{E}-4$	$1.78 \mathrm{E}+6$
Pu^{242}	$8 \mathrm{E}-4$	0.203	$1.78 \mathrm{E}+6$
Cm^{242}	0.03	$9.05 \mathrm{E}-6$	$6.66 \mathrm{E}+7$
Am^{243}	$8 \mathrm{E}-4$	$4.00 \mathrm{E}-3$	$1.78 \mathrm{E}+6$
Cm^{244}	$1 \mathrm{E}-3$	$1.23 \mathrm{E}-5$	$2.22 \mathrm{E}+6$
Cf^{249}	$5 \mathrm{E}-4$	$1.22 \mathrm{E}-4$	$1.11 \mathrm{E}+6$
Bk^{249}	0.2	$1.22 \mathrm{E}-4$	$4.44 \mathrm{E}+8$
Cf^{252}	$2 \mathrm{E}-3$	$3.72 \mathrm{E}-6$	$4.44 \mathrm{E}+6$
Es^{253}	0.2	$7.93 \mathrm{E}-6$	$4.44 \mathrm{E}+8$

INHALATION ALIs OF
COMMONLY ENCOUNTERED RADIONUCLIDES

Isotope	$m \mathrm{mi} / \mathrm{ALI}$	$\mathrm{mg} / \mathrm{ALI}$	$\mathrm{DPM} / \mathrm{ALI}$	$\mathrm{DAC}(\mu \mathrm{Ci} / \mathrm{ml})$
H^{3}	80	$8.25 \mathrm{E}-3$	$1.78 \mathrm{E}+11$	$2 \mathrm{E}-5$
Be^{7}	20	$5.71 \mathrm{E}-5$	$4.44 \mathrm{E}+10$	$8 \mathrm{E}-6$
C^{14}	2	0.448	$4.44 \mathrm{E}+9$	$1 \mathrm{E}-6$
$\mathrm{~F}^{18}$	70	$7.36 \mathrm{E}-7$	$1.55 \mathrm{E}+11$	$3 \mathrm{E}-5$
Na^{22}	0.6	$9.61 \mathrm{E}-5$	$1.33 \mathrm{E}+9$	$3 \mathrm{E}-7$
Na^{24}	5	$5.73 \mathrm{E}-7$	$1.11 \mathrm{E}+10$	$2 \mathrm{E}-6$
Al^{26}	0.06	3.18	$1.33 \mathrm{E}+8$	$3 \mathrm{E}-8$
P^{32}	0.4	$1.40 \mathrm{E}-6$	$8.88 \mathrm{E}+8$	$2 \mathrm{E}-7$
Cl^{36}	0.2	6.1	$4.44 \mathrm{E}+8$	$1 \mathrm{E}-7$
$\mathrm{~K}^{40}$	0.4	$5.72 \mathrm{E}+4$	$8.88 \mathrm{E}+8$	$2 \mathrm{E}-7$
$\mathrm{~K}^{42}$	5	$8.28 \mathrm{E}-7$	$1.11 \mathrm{E}+10$	$2 \mathrm{E}-6$
$\mathrm{~K}^{43}$	9	$2.75 \mathrm{E}-6$	$2.00 \mathrm{E}+10$	$4 \mathrm{E}-6$
Sc^{46}	0.2	$5.90 \mathrm{E}-6$	$4.44 \mathrm{E}+8$	$1 \mathrm{E}-7$
Sc^{47}	3	$3.62 \mathrm{E}-6$	$6.66 \mathrm{E}+9$	$1 \mathrm{E}-6$
Sc^{48}	1	$6.69 \mathrm{E}-7$	$2.22 \mathrm{E}+9$	$6 \mathrm{E}-7$
$\mathrm{~V}^{48}$	0.6	$3.52 \mathrm{E}-6$	$1.33 \mathrm{E}+9$	$3 \mathrm{E}-7$
Cr^{51}	20	$2.16 \mathrm{E}-4$	$4.44 \mathrm{E}+10$	$8 \mathrm{E}-6$
Mn^{52}	0.9	$2.00 \mathrm{E}-6$	$2.00 \mathrm{E}+9$	$4 \mathrm{E}-7$
Mn^{54}	0.8	$1.03 \mathrm{E}-4$	$1.78 \mathrm{E}+9$	$3 \mathrm{E}-7$
Fe^{55}	2	$8.39 \mathrm{E}-4$	$4.44 \mathrm{E}+9$	$8 \mathrm{E}-7$
Mn^{56}	20	$9.21 \mathrm{E}-7$	$4.44 \mathrm{E}+10$	$6 \mathrm{E}-6$
Co^{56}	0.2	$6.63 \mathrm{E}-6$	$4.44 \mathrm{E}+8$	$8 \mathrm{E}-8$
Co^{57}	0.7	$8.30 \mathrm{E}-5$	$1.55 \mathrm{E}+9$	$3 \mathrm{E}-7$
Ni^{57}	3	$1.94 \mathrm{E}-6$	$6.66 \mathrm{E}+9$	$1 \mathrm{E}-6$
Co^{58}	0.7	$2.20 \mathrm{E}-5$	$1.55 \mathrm{E}+9$	$3 \mathrm{E}-7$
Ni^{59}	2	25.1	$4.44 \mathrm{E}+9$	$8 \mathrm{E}-7$
Fe^{59}	0.3	$6.03 \mathrm{E}-6$	$6.66 \mathrm{E}+8$	$1 \mathrm{E}-7$

INHALATION ALIs OF
COMMONLY ENCOUNTERED RADIONUCLIDES

Isotope	$\mathrm{mCi} / \mathrm{ALI}$	$\mathrm{mg} / \mathrm{ALI}$	$\mathrm{DPM} / \mathrm{ALI}$	$\mathrm{DAC}(\mu \mathrm{Ci} / \mathrm{ml})$
Co^{60}	0.03	$2.65 \mathrm{E}-5$	$6.66 \mathrm{E}+7$	$1 \mathrm{E}-8$
Cu^{62}	3	$9.64 \mathrm{E}-9$	$6.66 \mathrm{E}+9$	$1 \mathrm{E}-6$
Zn^{65}	0.3	$3.64 \mathrm{E}-5$	$6.66 \mathrm{E}+8$	$1 \mathrm{E}-7$
Ge^{68}	0.1	$1.41 \mathrm{E}-5$	$2.22 \mathrm{E}+8$	$4 \mathrm{E}-8$
Se^{75}	0.6	$4.13 \mathrm{E}-5$	$1.33 \mathrm{E}+9$	$3 \mathrm{E}-7$
Rb^{88}	60	$4.98 \mathrm{E}-7$	$1.33 \mathrm{E}+11$	$3 \mathrm{E}-5$
Rb^{89}	100	$7.30 \mathrm{E}-7$	$2.22 \mathrm{E}+11$	$6 \mathrm{E}-5$
Sr^{89}	0.1	$3.44 \mathrm{E}-6$	$2.22 \mathrm{E}+8$	$6 \mathrm{E}-8$
Sr^{90}	0.02	$1.46 \mathrm{E}-4$	$4.44 \mathrm{E}+7$	$2 \mathrm{E}-9$
Y^{90}	0.6	$1.10 \mathrm{E}-6$	$1.33 \mathrm{E}+9$	$2 \mathrm{E}-7$
Nb^{94}	0.02	0.105	$4.44 \mathrm{E}+7$	$6 \mathrm{E}-9$
Zr^{95}	0.1	$4.66 \mathrm{E}-6$	$2.22 \mathrm{E}+8$	$6 \mathrm{E}-8$
Tc^{99}	0.7	41.3	$1.55 \mathrm{E}+9$	$3 \mathrm{E}-7$
Mo^{99}	1	$2.08 \mathrm{E}-6$	$2.22 \mathrm{E}+9$	$6 \mathrm{E}-7$
Tc^{99}	200	$3.80 \mathrm{E}-5$	$4.44 \mathrm{E}+11$	$6 \mathrm{E}-5$
Ru^{906}	0.01	$3.02 \mathrm{E}-6$	$2.22 \mathrm{E}+7$	$5 \mathrm{E}-9$
1^{125}	0.06	$3.45 \mathrm{E}-6$	$1.33 \mathrm{E}+8$	$3 \mathrm{E}-8$
1^{126}	0.04	$5.02 \mathrm{E}-7$	$8.88 \mathrm{E}+7$	$1 \mathrm{E}-8$
1^{129}	$9 \mathrm{E}-3$	50.9	$2.00 \mathrm{E}+7$	$4 \mathrm{E}-9$
1^{131}	0.05	$4.03 \mathrm{E}-7$	$1.11 \mathrm{E}+8$	$2 \mathrm{E}-8$
1^{133}	0.3	$2.65 \mathrm{E}-7$	$6.66 \mathrm{E}+8$	$1 \mathrm{E}-7$
1^{134}	50	$1.88 \mathrm{E}-6$	$1.11 \mathrm{E}+11$	$2 \mathrm{E}-5$
1^{135}	2	$5.66 \mathrm{E}-7$	$4.44 \mathrm{E}+9$	$7 \mathrm{E}-7$
Cs^{137}	0.2	$2.31 \mathrm{E}-3$	$4.44 \mathrm{E}+8$	$7 \mathrm{E}-8$
$\mathrm{Ba}^{137 m}$	$\mathrm{~N} / \mathrm{A}$	N / A	N / A	N / A
Ba^{140}	1	$1.37 \mathrm{E}-5$	$2.22 \mathrm{E}+9$	$6 \mathrm{E}-7$

INHALATION ALIs OF
COMMONLY ENCOUNTERED RADIONUCLIDES

Isotope	$\mathrm{mCi} / \mathrm{ALI}$	$\mathrm{mg} / \mathrm{ALI}$	$\mathrm{DPM} / \mathrm{ALI}$	$\mathrm{DAC}(\mu \mathrm{Ci} / \mathrm{ml})$
La^{140}	1	$1.80 \mathrm{E}-6$	$2.22 \mathrm{E}+9$	$5 \mathrm{E}-7$
Gd^{148}	$8 \mathrm{E}-6$	$2.48 \mathrm{E}-7$	$1.78 \mathrm{E}+4$	$3 \mathrm{E}-12$
Ir^{192}	0.2	$2.71 \mathrm{E}-5$	$4.44 \mathrm{E}+8$	$9 \mathrm{E}-8$
Tl^{204}	2	$4.31 \mathrm{E}-3$	$4.44 \mathrm{E}+9$	$9 \mathrm{E}-7$
$\mathrm{~Pb}^{210}$	$2 \mathrm{E}-4$	$2.62 \mathrm{E}-6$	$4.44 \mathrm{E}+5$	$1 \mathrm{E}-10$
Po^{210}	$6 \mathrm{E}-4$	$1.34 \mathrm{E}-7$	$1.33 \mathrm{E}+6$	$3 \mathrm{E}-10$
Bi^{210}	0.03	$2.42 \mathrm{E}-7$	$6.66 \mathrm{E}+7$	$1 \mathrm{E}-8$
Bi^{212}	0.2	$1.36 \mathrm{E}-8$	$4.44 \mathrm{E}+8$	$1 \mathrm{E}-7$
$\mathrm{~Pb}^{212}$	0.03	$2.16 \mathrm{E}-8$	$6.66 \mathrm{E}+7$	$1 \mathrm{E}-8$
Bi^{214}	0.8	$1.81 \mathrm{E}-8$	$1.78 \mathrm{E}+9$	$3 \mathrm{E}-7$
$\mathrm{~Pb}^{214}$	0.8	$2.46 \mathrm{E}-8$	$1.78 \mathrm{E}+9$	$3 \mathrm{E}-7$
Rn^{220}	0.02	$2.17 \mathrm{E}-11$	$4.44 \mathrm{E}+7$	$8 \mathrm{E}-9$
Rn^{222}	0.1	$6.5 \mathrm{E}-7$	$2.22 \mathrm{E}+8$	$3 \mathrm{E}-8$
Ra^{223}	$7 \mathrm{E}-4$	$1.37 \mathrm{E}-8$	$1.55 \mathrm{E}+6$	$3 \mathrm{E}-10$
Ra^{224}	$2 \mathrm{E}-3$	$1.26 \mathrm{E}-8$	$4.44 \mathrm{E}+6$	$7 \mathrm{E}-10$
Ra^{225}	$7 \mathrm{E}-4$	$1.80 \mathrm{E}-8$	$1.55 \mathrm{E}+6$	$3 \mathrm{E}-10$
Ra^{226}	$6 \mathrm{E}-4$	$6.06 \mathrm{E}-4$	$1.33 \mathrm{E}+6$	$3 \mathrm{E}-10$
Ac^{222}	$4 \mathrm{E}-7$	$5.52 \mathrm{E}-9$	888	$2 \mathrm{E}-13$
Th^{227}	$3 \mathrm{E}-4$	$9.76 \mathrm{E}-9$	$6.66 \mathrm{E}+5$	$1 \mathrm{E}-10$
Ac^{228}	$9 \mathrm{E}-3$	$4.03 \mathrm{E}-9$	$2.00 \mathrm{E}+7$	$4 \mathrm{E}-9$
Ra^{228}	0.001	$3.67 \mathrm{E}-6$	$2.22 \mathrm{E}+6$	$5 \mathrm{E}-10$
Th^{228}	$1 \mathrm{E}-5$	$1.22 \mathrm{E}-8$	$2.22 \mathrm{E}+4$	$4 \mathrm{E}-12$
Th^{229}	$9 \mathrm{E}-7$	$4.20 \mathrm{E}-6$	$2.00 \mathrm{E}+3$	$4 \mathrm{E}-13$
Th^{230}	$6 \mathrm{E}-6$	$2.91 \mathrm{E}-4$	$1.33 \mathrm{E}+4$	$3 \mathrm{E}-12$
U^{230}	$3 \mathrm{E}-4$	$1.10 \mathrm{E}-8$	$6.66 \mathrm{E}+5$	$1 \mathrm{E}-10$
$\mathrm{~Pa}^{231}$	$2 \mathrm{E}-6$	$4.24 \mathrm{E}-5$	$4.44 \mathrm{E}+3$	$7 \mathrm{E}-13$
Th^{232}	$1 \mathrm{E}-6$	9.08	$2.22 \mathrm{E}+3$	$5 \mathrm{E}-13$

INHALATION ALIs OF
COMMONLY ENCOUNTERED RADIONUCLIDES

Isotope	$\mathrm{mCi} / \mathrm{ALI}$	$\mathrm{mg} / \mathrm{ALI}$	$\mathrm{DPM} / \mathrm{ALI}$	$\mathrm{DAC}(\mu \mathrm{Ci} / \mathrm{ml})$
U^{232}	$8 \mathrm{E}-6$	$3.63 \mathrm{E}-7$	$1.78 \mathrm{E}+4$	$3 \mathrm{E}-12$
U^{233}	$4 \mathrm{E}-5$	$4.15 \mathrm{E}-3$	$8.88 \mathrm{E}+4$	$2 \mathrm{E}-11$
U^{234}	$4 \mathrm{E}-5$	$6.44 \mathrm{E}-3$	$8.88 \mathrm{E}+4$	$2 \mathrm{E}-11$
$\mathrm{~Pa}^{234}$	7	$1.02 \mathrm{E}-8$	$1.55 \mathrm{E}+10$	$3 \mathrm{E}-6$
$\mathrm{~Pa}^{234 \mathrm{M}}$	7	$3.50 \mathrm{E}-6$	$1.55 \mathrm{E}+10$	$3 \mathrm{E}-6$
Th^{234}	0.2	$8.64 \mathrm{E}-6$	$4.44 \mathrm{E}+8$	$6 \mathrm{E}-8$
U^{235}	$4 \mathrm{E}-5$	18.5	$8.88 \mathrm{E}+4$	$2 \mathrm{E}-11$
Pu^{236}	$2 \mathrm{E}-5$	$3.79 \mathrm{E}-8$	$4.44 \mathrm{E}+4$	$7 \mathrm{E}-12$
$\mathrm{~Np}^{237}$	$4 \mathrm{E}-6$	$5.67 \mathrm{E}-3$	$8.88 \mathrm{E}+3$	$2 \mathrm{E}-12$
U^{238}	$4 \mathrm{E}-5$	119	$8.88 \mathrm{E}+4$	$2 \mathrm{E}-11$
Pu^{238}	$7 \mathrm{E}-6$	$4.08 \mathrm{E}-7$	$1.55 \mathrm{E}+4$	$3 \mathrm{E}-12$
Pu^{239}	$6 \mathrm{E}-6$	$9.66 \mathrm{E}-5$	$1.33 \mathrm{E}+4$	$2 \mathrm{E}-12$
$\mathrm{~Np}^{239}$	2	$8.62 \mathrm{E}-6$	$4.44 \mathrm{E}+9$	$1 \mathrm{E}-6$
Pu^{240}	$6 \mathrm{E}-6$	$2.64 \mathrm{E}-5$	$1.33 \mathrm{E}+4$	$2 \mathrm{E}-12$
Pu^{241}	$3 \mathrm{E}-4$	$2.91 \mathrm{E}-6$	$6.66 \mathrm{E}+5$	$1 \mathrm{E}-10$
Am^{241}	$6 \mathrm{E}-6$	$1.75 \mathrm{E}-6$	$1.33 \mathrm{E}+4$	$2 \mathrm{E}-12$
Pu^{242}	$7 \mathrm{E}-6$	$1.78 \mathrm{E}-3$	$1.55 \mathrm{E}+4$	$2 \mathrm{E}-12$
Cm^{242}	$3 \mathrm{E}-4$	$9.05 \mathrm{E}-8$	$6.66 \mathrm{E}+5$	$1 \mathrm{E}-10$
Am^{243}	$6 \mathrm{E}-6$	$3.00 \mathrm{E}-5$	$1.33 \mathrm{E}+4$	$2 \mathrm{E}-12$
Cm^{244}	$1 \mathrm{E}-5$	$1.23 \mathrm{E}-7$	$2.22 \mathrm{E}+4$	$4 \mathrm{E}-12$
Cf^{249}	$4 \mathrm{E}-6$	$9.77 \mathrm{E}-7$	$8.88 \mathrm{E}+3$	$2 \mathrm{E}-12$
Bk^{249}	$2 \mathrm{E}-3$	$1.22 \mathrm{E}-6$	$4.44 \mathrm{E}+6$	$9 \mathrm{E}-10$
Cf^{252}	$2 \mathrm{E}-5$	$3.72 \mathrm{E}-8$	$4.44 \mathrm{E}+4$	$1 \mathrm{E}-11$
Es^{253}	$1 \mathrm{E}-3$	$3.97 \mathrm{E}-8$	$2.22 \mathrm{E}+6$	$6 \mathrm{E}-10$

The values stated for Rn^{220} and Rn^{222} include their progeny; $\mathrm{Tl}^{206}, \mathrm{Tl}^{208}, \mathrm{Tl}^{210}$, $\mathrm{Po}^{212}, \mathrm{Po}^{214}, \mathrm{Po}^{216}, \mathrm{Po}^{218}$ and At^{218}

Activity (in DPM) vs Particle Size (in microns)

 For oxide form of various isotopes| | 0.1μ | 0.3μ | 0.5μ | 1μ | 3μ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Isotope | DPM | DPM | DPM | DPM | DPM |
| U^{234} | 7.0E-5 | $1.88 \mathrm{E}-3$ | $8.7 \mathrm{E}-3$ | 0.07 | 1.9 |
| U^{235} | $2.4 \mathrm{E}-8$ | 6.5E-7 | 3.0E-6 | 2.4E-5 | 6.5E-4 |
| U^{238} | $3.8 \mathrm{E}-9$ | $1.0 \mathrm{E}-7$ | 4.7E-7 | 3.8E-6 | $1.0 \mathrm{E}-4$ |
| Np^{237} | 8.0E-5 | 2.2E-4 | $1.0 \mathrm{E}-3$ | 8.0E-3 | 0.22 |
| Pu^{238} | 0.2 | 5.4 | 25 | 201 | 5420 |
| Pu^{239} | 7.3E-4 | 0.02 | 0.09 | 0.73 | 19.7 |
| Pu^{240} | $2.7 \mathrm{E}-3$ | 0.07 | 0.33 | 2.7 | 72 |
| Pu^{241} | 1.2 | 32.7 | 151 | 1210 | 3.3 E 4 |
| Am^{241} | 0.04 | 1.1 | 5.1 | 41.1 | 1110 |
| | 5μ | 10 μ | 30μ | 50 μ | 100 μ |
| Isotope | DPM | DPM | DPM | DPM | DPM |
| \cup^{234} | 8.7 | 69.7 | 1900 | 8700 | 7.0E4 |
| U^{235} | $3.0 \mathrm{E}-3$ | 0.02 | 0.7 | 3.0 | 24.2 |
| U^{238} | $4.7 \mathrm{E}-4$ | 3.8E-3 | 0.1 | 0.47 | 3.8 |
| Np^{237} | 1.0 | 8.0 | 217 | 1000 | 8020 |
| Pu^{238} | 2.5E4 | 2.0 E 5 | 5.4E6 | 2.5E7 | 2.0E8 |
| Pu^{239} | 91 | 730 | 2.0E4 | 9.1E4 | 7.3E5 |
| Pu^{240} | 333 | 2670 | 7.2E4 | 3.3E5 | 2.7E6 |
| Pu^{241} | 1.5E5 | 1.2 E 6 | 3.3 E 7 | 1.5E8 | 1.2 E 9 |
| Am^{241} | 5140 | 4.1E4 | 1.1E6 | 5.14E6 | 4.1E7 |

Note: The measured activity will be less than calculated due to self-shielding.

Calculating Activity in DPM for the Oxide Form of Isotopes

1. Volume of the particle is
$\mathrm{V}=1 / 6 \pi d^{3}$.
2. Use the stated density of the isotope's dioxide form from a reference such as the Handbook of Chemistry and Physics.
3. Mass of the particle is $\mathrm{M}=\mathrm{V} \times$ density.
4. Activity of the particle is
$\mathrm{A}=\mathrm{M} \times$ specific activity.
5. Correct the activity of the particle for the oxide; the molecular weight of Pu^{238} is 238 , the activity of the dioxide form must be reduced by the ratio of the molecular weight of the dioxide form to the molecular weight of Pu^{238}. Multiply the calculated activity by 238/270 to get the activity of the dioxide form.
6. Change the activity to dpm by multiplying the activity in curies by 2.22E12.

Example: For a 10μ diameter Pu^{238} dioxide form particle
DPM $=\quad \mathrm{V} \times \mathrm{M} \times \mathrm{A} \times$ ratio $\times 2.22 \mathrm{E} 12$

$\mathrm{V}=1 / 6 \pi \mathrm{~d}^{3}(\mathrm{~d}$ of 10μ is 0.001 cm$)$	$=5.236 \mathrm{E}-10 \mathrm{~cm}^{3}$
$\mathrm{M}=\mathrm{V} \times$ density $\left(11.46 \mathrm{~g} / \mathrm{cm}^{3}\right)$	$=6 \mathrm{E}-9 \mathrm{~g} / \mathrm{cm}^{3}$
$\mathrm{~A}=\mathrm{M} \times$ specific activity $(17.1 \mathrm{Ci} / \mathrm{g})$	$=1.03 \mathrm{E}-7 \mathrm{Ci}$
$\mathrm{A} \times$ ratio $=1.03 \mathrm{E}-7 \mathrm{Ci} \times 238 / 270$	$=9 \mathrm{E}-8 \mathrm{Ci}$
$\mathrm{DPM}=9 \mathrm{E}-8 \mathrm{Ci} \times 2.22 \mathrm{E} 12 \mathrm{dpm} / \mathrm{Ci}$	$=200,777 \mathrm{DPM}$

For particles larger than about 1μ the aerodynamic diameter is approximately equal to the physical diameter times the square root of the density. The 10μ diameter particle in our example would have an equivalent aerodynamic diameter of 34μ ($10 \mu \mathrm{x}$ the square root of 11.46). This must be taken into account in air sampling/monitoring situations.

EMERGENCY RESPONSE

Write in Your Emergency Phone Numbers

Supervisor:

Team Office:

Group Office:

Division Office:

Emergency Response Team:

Fire Department:

Hospital:

Guidelines for Control of Emergency Exposures

Use a dose limit of 5 rem for all emergency procedures
Use a dose limit of 10 rem only for protecting major property Use a dose limit of 25 rem for lifesaving or protection of large populations
Use a dose limit > 25 rem for lifesaving or protection of large populations only by volunteers and where the risks have been evaluated

RADIOLOGICAL EMERGENCY RESPONSE

SWIMS for Radiological Emergencies

Only under extreme radiological conditions such as external radiation greater than $100 \mathrm{rem} / \mathrm{hr}$ or airborne radioactivity concentrations greater than 100,000 DAC would the radiological emergency take precedence over serious personnel injuries. Therefore, you would not attempt to move a seriously injured person before medical personnel arrived unless the radiological conditions presented a greater danger to that person and yourself.

Stop or Secure operations in the area. If applicable, secure the operation causing the emergency.

Warn others in the area as you are evacuating. Do not search for potentially missing personnel at this stage of the emergency.

Isolate the source of the radiation or radioactivity if you understand the operation and are qualified to isolate the source.

Minimize individual exposure and contamination. Control the entry points to the area if possible.
Secure unfiltered ventilation. Evaluate the radiological conditions and advise facility personnel on ventilation control.

RADIOLOGICAL CONTROL PRIORITIES DURING MEDICAL EMERGENCIES

Immediate treatment by trained medical personnel should be sought for any serious injuries such as those involving profuse bleeding or broken bones. The order of priority should be to protect lives, protect property, and then to control the spread of contamination.

Identifying a Major Injury

Consider the following points in determining if the injury should be handled as a major injury.
Any head injury (from base of neck to top of head)
Any loss of consciousness
Any disorientation
Any convulsion
Any loss of sensation
Any loss of motor function
Limbs at abnormal angles
Amputations
Any burn of the face, hands, feet, or genitals (chemical, thermal, or radiation)
Any burn larger than the palm of your hand
Any inhalation of any abnormal substance
Profuse bleeding
Abnormal breathing patterns

Major Injuries Occurring in Radiological Areas

Protect yourself - consider the magnitude of any radiation field or airborne radioactivity
Stay with the victim
Don't move the victim unless there is a danger from some environmental emergency such as fire, explosion, hazardous material spill, or radiation field

If you must move the victim, drag them by either the hands or the feet to a safe area
Apply First Aid Only if you are trained to do so
Secure help - yell or phone, but don't leave the victim unless necessary
Send someone to meet the ambulance to guide the medical personnel to the victim
Prepare the area for access by the medical team
Begin a gross radiological survey of the immediate area near the victim, beginning with the victim

Be sure to survey any object that caused the injury
Provide information to medical personnel about the victim (what happened, how, when, location of phone and exits, indicate which areas on the victim are contaminated and include contamination values)

FACILITY HAZARDS

Power Reactors

Fission Products $\left(\beta^{-}, \gamma\right)$, Activation Products $\left(\beta^{-}, \gamma\right)$, Neutrons (during operation)

Production Reactors

Fission Products $\left(\beta^{-}, \gamma\right)$, Activation Products $\left(\beta^{-}, \gamma\right)$, Transuranics $\left(\alpha, \beta^{-}, \gamma\right)$, Neutrons (during operation)

Accelerators

Prompt Radiations: Bremsstrahlung, Photoneutrons, Photons, Protons
Induced Radiations: Activation Products (β^{-}, γ)
Highest Dose Equivalent Rate at Target

X-ray Devices

Primary Beam (unscattered X-rays)
Secondary (scattered X-rays, mostly from patient)
Leakage (X-rays at locations other than primary beam)

Nuclear Medicine

Highest dose received while eluting radioisotope generator and working near patients (γ)

Radioactive Waste Disposal Sites

Contamination of potable water supply (α, β^{-}), Occupational dose during off-loading and handling (γ)

Thorium-232 Decay Chain (including Thoron progeny)

Isotope and half-life	Energy (MeV) and abundance (\%)		
${ }^{232} \mathrm{Th} / 1.41 \mathrm{E} 10 \mathrm{y}$	$\begin{gathered} \alpha \\ 3.95 @ 24 \% \\ 4.01 @ 76 \% \end{gathered}$	$\begin{aligned} & \beta \\ & \text { No } \end{aligned}$	$\underset{\text { negligible }}{\gamma}$
${ }^{228} \mathrm{Ra} / 6.7 \mathrm{y}$	No	0.055 @ 100\%	negligible
${ }^{228} \mathrm{Ac} / 6.13 \mathrm{~h}$	No	$\begin{aligned} & 1.118 @ 35 \% \\ & 1.75 @ 12 \% \\ & 2.09 @ 12 \% \end{aligned}$	$\begin{aligned} & 0.340 @ 15 \% \\ & 0.908 \text { @ 25\% } \\ & 0.960 @ 20 \% \end{aligned}$
${ }^{228} \mathrm{Th} / 1.91 \mathrm{y}$	$\begin{aligned} & 5.34 @ 28 \% \\ & 5.43 @ 71 \% \end{aligned}$	No	$\begin{aligned} & 0.084 @ 1.6 \% \\ & 0.214 @ 0.3 \% \end{aligned}$
${ }^{224} \mathrm{Ra} / 3.64 \mathrm{~d}$	$\begin{aligned} & 5.45 @ 6 \% \\ & 5.68 @ 94 \% \end{aligned}$	No	0.241 @ 3.7\%
${ }^{220} \mathrm{Rn}$ (Thoron) / 55 s	6.29 @ 100\%	No	0.550@0.07\%
${ }^{216} \mathrm{Po} / 0.15 \mathrm{~s}$	6.78 @ 100\%	No	negligible
${ }^{212} \mathrm{~Pb} / 10.64 \mathrm{~h}$	No	$\begin{aligned} & 0.346 @ 81 \% \\ & 0.586 @ 14 \% \end{aligned}$	$\begin{aligned} & 0.239 @ 47 \% \\ & 0.300 @ 3.2 \% \end{aligned}$
${ }^{212} \mathrm{Bi} / 60.6 \mathrm{~m}$	$\begin{aligned} & 6.05 @ 25 \% \\ & 6.09 @ 10 \% \end{aligned}$	$\begin{aligned} & 1.55 @ 5 \% \\ & 2.26 @ 55 \% \end{aligned}$	$\begin{aligned} & 0.040 @ 2 \% \\ & 0.727 @ 7 \% \\ & 1.62 @ 1.8 \% \end{aligned}$
${ }^{212} \mathrm{Po} / 304 \mathrm{~ns}$	8.78 @ 100\%	No	negligible
${ }^{208} \mathrm{Tl} / 3.10 \mathrm{~m}$	No	$\begin{aligned} & 1.28 @ 25 \% \\ & 1.52 @ 21 \% \\ & 1.80 @ 50 \% \end{aligned}$	$\begin{aligned} & 0.511 @ 23 \% \\ & 0.583 @ \text { 86\% } \\ & 2.614 @ 100 \% \end{aligned}$

${ }^{212} \mathrm{Bi}$ decays 64% of the time to ${ }^{212} \mathrm{Po}$ and 36% of the time to ${ }^{208} \mathrm{~T}$ ।

Uranium-238 Decay Chain (down to Polonium-218			
Isotope and half-life	Energy (MeV) and abundance (\%)		
	α	β	γ
${ }^{238} \mathrm{U} / 4.451 \mathrm{E} 9 \mathrm{y}$	$\begin{aligned} & 4.15 @ 25 \% \\ & 4.20 @ 75 \% \end{aligned}$	No	negligible
${ }^{234}$ Th / 24.1 d	No	$\begin{aligned} & 0.103 @ ~ 21 \% \\ & 0.193 @ 79 \% \end{aligned}$	$\begin{aligned} & 0.063 @ 3.5 \% \\ & 0.093 @ 4 \% \end{aligned}$
${ }^{234 m} \mathrm{~Pa} / 1.17 \mathrm{~m}$	No	2.29 @ 98\%	$\begin{aligned} & 0.765 @ 0.3 \% \\ & 1.001 @ 0.6 \% \end{aligned}$
${ }^{234} \mathrm{U} / 2.47 \mathrm{E} 5 \mathrm{y}$	$\begin{aligned} & 4.72 @ ~ 28 \% \\ & 4.77 @ 72 \% \end{aligned}$	No	0.053 @ 0.2\%
${ }^{230} \mathrm{Th} / 8.0 \mathrm{E} 4 \mathrm{y}$	$\begin{aligned} & 4.62 @ 24 \% \\ & 4.68 @ 76 \% \end{aligned}$	No	$\begin{aligned} & 0.068 @ 0.6 \% \\ & 0.142 @ 0.07 \% \end{aligned}$
${ }^{226} \mathrm{Ra} / 1602 \mathrm{y}$	$\begin{aligned} & 4.60 @ 6 \% \\ & 4.78 @ 95 \% \end{aligned}$	No	0.186 @ 4\%
${ }^{222} \mathrm{Rn}$ (Radon) / 3.823 d	5.49 @ 100\%	No	0.510@0.07\%
${ }^{218} \mathrm{Po} / 3.05 \mathrm{~m}$	6.00 @ 100\%	0.33 @ 0.019\%	negligible
\downarrow	\downarrow	\downarrow	\downarrow

${ }^{234 \mathrm{~m}} \mathrm{~Pa}$ decays 99.87% of the time to ${ }^{234} \mathrm{U} \& 0.13 \%$ of the time to ${ }^{234} \mathrm{~Pa}$

Radon Decay Chain (from Uranium-238 decay)

Isotope and half-life	Energy (MeV) and abundance (\%)		
	α	β	γ
${ }^{222} \mathrm{Rn}$ (Radon) / 3.823 d	5.49 @ 100\%	No	0.510@0.07\%
${ }^{218} \mathrm{Po} / 3.05 \mathrm{~m}$	6.00 @ 100\%	0.33 @ 0.019\%	negligible
${ }^{214} \mathrm{~Pb} / 26.8 \mathrm{~m}$	No	0.65 @ 50\%	0.295 @ 19\%
		0.71 @ 40\%	0.352 @ 36\%
		0.98 @ 6\%	
${ }^{214} \mathrm{Bi} / 19.7 \mathrm{~m}$	negligible	1.00 @ 23\%	0.609 @ 47\%
		1.51 @ 40\%	1.120 @ 17\%
		3.26 @ 19\%	1.764 @ 17\%
${ }^{214} \mathrm{Po} / 164$ us	7.69 @ 100\%	No	0.799@0.014\%
${ }^{210} \mathrm{TI} / 1.3 \mathrm{~m}$	No	1.3 @ 25\%	0.296 @ 80\%
		1.9 @ 56\%	0.795 @100\%
		2.3 @ 19\%	1.31 @ 21\%
${ }^{210} \mathrm{~Pb} / 21 \mathrm{y}$	negligible	0.016 @ 85\%	0.047 @ 4\%
		0.061 @ 15\%	
${ }^{210} \mathrm{Bi} / 5.01 \mathrm{~d}$	negligible	1.161 @ 100\%	negligible
${ }^{210} \mathrm{Po} / 138.4 \mathrm{~d}$	5.305 @ 100\%	No	negligible
${ }^{206} \mathrm{TI} / 4.19 \mathrm{~m}$	No	1.571 @ 100\%	negligible

${ }^{218} \mathrm{Po}$ decays 99.98% of the time to ${ }^{214} \mathrm{~Pb} \& 0.02 \%$ of the time to ${ }^{218} \mathrm{At}$
${ }^{214} \mathrm{Bi}$ decays 99.98% of the time to ${ }^{214} \mathrm{Po} \& 0.02 \%$ of the time to ${ }^{210} \mathrm{~T}$ ।
${ }^{210} \mathrm{Bi}$ decays $\sim 100 \%$ of the time to ${ }^{210} \mathrm{Po} \& 0.00013 \%$ of the time to ${ }^{206} \mathrm{TI}$

YEAR 2001 CALENDER

\mathbf{S}	\mathbf{M}	\mathbf{T}	\mathbf{W}	\mathbf{T}	\mathbf{F}	\mathbf{S}
		January				
	\boldsymbol{N}	2	3	4	5	6
7	8	9	10	11	12	13
14	\boldsymbol{K}	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31			

$\begin{array}{lllllll}S & M & T & W & T & F & \mathbf{S}\end{array}$ | | July | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | \boldsymbol{l} | 5 | 6 | 7 |
| 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| 15 | 16 | 17 | 18 | 19 | 20 | 21 |
| 22 | 23 | 24 | 25 | 26 | 27 | 28 |
| 29 | 30 | 31 | | | | |

February

				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	\boldsymbol{P}	20	21	22	23	24
25	26	27	28			

March

				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	31

April

1	2	3	4	5	6	7
8	9	10	11	12	13	14
\boldsymbol{E}	16	17	18	19	20	21
22	23	24	\boldsymbol{S}	26	27	28
29	30					

May						
		1	2	3	4	5
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	\boldsymbol{M}	29	30	31		

June

3	4	5	6	7	1	2
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30

August

			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	

September

					1	
9	\boldsymbol{L}	4	5	6	7	8
16	10	11	12	13	14	15
23	17	18	19	20	21	22
30	24	25	26	27	28	29

October

	1	2	3	4	5	6
7	\boldsymbol{C}	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31			

November

			1	2	3	
4	5	6	7	8	9	10
11	\boldsymbol{V}	13	14	15	16	17
18	19	20	21	\boldsymbol{T}	23	24
25	26	27	28	29	30	
		December				

					1	
2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	\boldsymbol{X}	26	27	28	29
30	31					

YEAR 2002 CALENDER

\mathbf{S}	\mathbf{M}	\mathbf{T}	\mathbf{W}	\mathbf{T}	\mathbf{F}	\mathbf{S}	
			January				
		\mathbf{N}	2	3	4	5	
6	7	8	9	10	11	12	
13	14	15	16	17	18	19	
20	\boldsymbol{K}	22	23	24	25	26	
27	28	29	30	31			

February

		February				
			1	2		
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	\boldsymbol{P}	19	20	21	22	23
24	25	26	27	28		
		March				

					1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
\boldsymbol{E}						

April

	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	\mathbf{S}	25	26	27
28	29	30				

May

			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	\boldsymbol{M}	28	29	30	31	
	June					

2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29
30						

$\begin{array}{lllllll}S & M & T & W & T & F & \mathbf{S}\end{array}$

	July					
	1	2	3	I	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31			

August

				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	31

September

1	\boldsymbol{L}	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30					

October

		1	2	3	4	5
6	7	8	9	10	11	12
13	C	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30	31		

November

			1	2		
3	4	5	6	7	8	9
10	\boldsymbol{V}	12	13	14	15	16
17	18	19	20	$\mathbf{2 1}$	$\mathbf{2 2}$	23
24	25	26	27	\boldsymbol{T}	29	30
		December				

1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	\boldsymbol{X}	26	27	28
29	30	31				

Page 98

ALPHABETICAL INDEX

Page

3 Abbreviations
87 Activity vs. Particle Size
42 Air Monitoring
56 Appendix D of 10CFR 835
21 Biological Effects of Radiation

Calculations

41 Airborne Radioactivity
36 Alpha \& Beta Crosstalk
36 Correction Factors for Detector Efficiency
36 Detector Efficiency
40 Dose Rate to air from a Point Beta Source
39 Exposure Rate from; point, line, disk source
38 Exposure Rate in an Air-filled Ionization Chamber
37 Inverse Square Law
38 Percent Resolution of a Gamma Spectroscopy Detector
39 Photon Fluence Rate
38 Shallow Dose Correction Factors
38 Stay-Time
34 Surface Contamination Correction Factors
48 Shield Thicknesses
39 Specific Gamma-Ray Constants
45 Surface Area
51 Transmission Factor (F) for Shielding an X-ray Device
38 True Count Rate Based on Resolving Time of a Gas-Filled Detector
27 TODE and TEDE
46 Volumes
40 6CEN

97 Calendars for Years 2001 \& 2002
65 Characteristic Radiations of Radionuclides

ALPHABETICAL INDEX

Page
7 Constants
4 Conversion of Units
52 Density of Various Materials
22 Dosimetry
61 DOT 49CFR173
89 Emergency Response
25 Equivalent Dose, Effective Dose, and Committed Effective Dose
93 Facility Hazards
47 Gamma \& Neutron Half-Value Layers
77 Gamma Exposure vs Particle Size
79 Ingestion \& Inhalation ALls
59 Instrument Selection and Use
57 Posting
19 Public Radiation Dose Rates
18 Radiation Interactions
26 Radiation Weighting Factors
31 Radioactive Decay Charts
53 Radioactive Decay Graphs
20 Radon Facts
33 Reporting Radiological Data
41 Respiratory Protection
8 Rules of Thumb
51 Shielding Materials
63 Specific Activity
73
29 Table of the Elements
55 Table 1 of DOE 5400.5
94 Thorium-232 and Uranium-238 Decay Chains
17 Units \& Terminology
Corrections, additions, deletions, and comments to;
tvoss@lanl.gov, phone 505-667-8930, fax 505-665-6678.

